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Chapter 28
Bell’s Theorem, Bell Inequalities,
and the ‘“Probability Normalization
Loophole”

John F. Clauser

Abstract Fifty years ago in 1964, John Bell [6], showed that deterministic local
hidden-variables theories are incompatible with quantum mechanics for idealized
systems. Inspired by his paper, Clauser, Horne, Shimony and Holt (CHSH) {12} in
1969 provided the first experimentally testable Bell Inequality and proposed an
experiment to test it. That experiment was first performed in 1972 by Freedman and
Clauser [20]. In 1974 Clauser and Home (CH) [13] first showed that all physical
theories consistent with “Local Realism” are constrained by an experimentally
testable loophole-free Bell Inequality—the CH inequality. These theories were
further clarified in 1976-1977 in “An Exchange on Local Beables”, a series of
papers by Bell, Shimony, Horne, and Clauser [8] and by Clauser and Shimony
(CS) [15] in their 1978 review article. In 2013, nearly fifty years after Bell’s original
1964 paper [6], two groups, Giustina et al. (24] and Christensen et al. [11] have
finally tested the loophole-free CH inequality. Clauser and Shimony (CS) [15] also
showed that the CHSH inequality is testable in a loophole-free manner by using a
“heralded” source. It was first tested this way by Rowe et al. [35] in 2001, and more
convincingly in 2008 by Matsukevich et al. [33]. To violate a Bell Inequality and
thereby to disprove Local Realism, one must experimentally examine a two com-
ponent entangled-state system, in a configuration that is analogous to a
Gedankenexperiment first proposed by Bohm [9] in 1951. To be used, the con-
figuration must generate a normalized coincidence rate with a large amplitude
sinusoidal dependence upon adjustable apparatus settings. Proper normalization of
this amplitude is critical for the avoidance of counterexamples and loopholes that
can possibly invalidate the test. The earliest tests used the CHSH inequality without
source heralding. The first method for normalizing coincidence rates without
heralding was proposed by CHSH [12] in 1969. It consists of an experimental
protocol in which coincidence rates measured with polarizers removed are used to
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normalize coincidence rates measured with polarizers inserted. Very high trans-
mission polarizers are required when using this method. Highly reasonable and very
weak supplementary assumptions by CHSH and by CH allow this protocol to work
in a nearly loophole free manner. A second method for normalizing coincidence
rates was offered by Garuccio and Rapisarda [22] in 1981. As will be discussed
below, it allows experiments to be done more casily, but at a significant cost to the
generality of their results. It was first used in the experiment by Aspect, Grangier,
and Roge [3] in 1982. It uses “ternary-result” apparatuses and allows the use of
highly absorbing polarizers, which would not work with other normalization
methods. It normalizes using a sum of coincidence rates. Gerhardt et al. [23] in
2011 theoretically and experimentally demonstrated counterexamples for tests that
use this normalization method. Their experiments thus obviate the validity of their
counterexamples, and further indicate that very high transmission polarizers are
necessary for convincing tests to be performed.

Introduction to Bell’s Theorem and the Bell Inequalities

Bell’s Theorem is formulated in terms of a set of individually named inequalities,
each with increasing generality and scope. These inequalities are collectively
referred to as the “Bell Inequalities”. They surprisingly follow from very simple
natural assumptions concerning the nature of reality. These assumptions, along with
their associated consequences via Bell’s Theorem, then constitute a minimal
framework for a whole class of theories originally named “Objective Local The-
ories” by Clauser and Homne (CH) [13] in 1974, and subsequently renamed “Local
Realism” by Clauser and Shimony (CS) [15] in 1978. The assumptions underlying
Local Realism are so simple and natural that one of this conference’s organizers,
Anton Zeilinger, recently commented that if Bell’s Theorem had been discovered
before quantum mechanics, it would have been promoted to be considered a law of
nature on its own, whereupon the subsequently discovered quantum mechanics
must obviously be wrong! The assumptions underlying Local Realism are reviewed
in the Appendix.

The essence of Bell’s Theorem is that theories based on Local Realism cannot
give the same prediction for certain “entangled-state” two-component systems as
does the theory of quantum mechanics. Thus, these two opposing theories are
experimentally distinguishable from each other. It is then the task for experimental
physicists to determine which of these two incompatible theories correctly describes
the world in which we live. To refute Local Realism (and/or to refute quantum
mechanics) experimentally, one can perform an experiment whose quantum
mechanical predictions violate a Bell Inequality. The first experiment to do so was
that by Freedman and Clauser [20] in 1972. Their results were then the first to
violate the CHSH inequality (but still leave open the normalization and locality
loopholes). Freedman and Clauser’s experimental results have been overwhelm-
ingly confirmed by many other experiments, some of which are discussed and
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tabulated in the section “Some Experimental Results”. The experiment by Aspect,
Dailbard and Roger [4] again violated the CHSH inequality, and was first to close
the locality loophole, but still leave open the normalization loophole. The
normalization-loophole-free heralded-source CHSH inequality was first tested by
Rowe et al. [35] in 2001, and more convincingly in 2008 by Matsukevich et al.
[33], with both experiments still leaving open the locality loophole. Giustina et al.
[24] and Christensen et al. [11] have finally tested the normalization-loophole-free
CH inequality in 2013. Experiments are currently in progress to finally close both
the normalization loophole and the locality loophole simultaneously in a single
experiment.

The particular entangled-state two-component systems referred to above were
used in a Gedankenexperiment that was first envisaged by David Bohm [9] in 1951.
That entangled-state system was used by John Bell [6] in his now-famous 1964
paper. Bohm’s Gedankenexperiment is described below in the section “Bohm’s
1951 Gedankenexperiment and Its Relation to Bell’s Theorem”. Bohm’s arrange-
ment then provides a prototype configuration for Bell’s Theorem experiments.

The generality and scope of Bell’s Theorem has evolved since its discovery.
John Bell’s 1964 paper [6] introduced the first Bell-Inequality and showed that no
Local Hidden Variables Theory (LHVT) can give the quantum mechanical pre-
diction for Bohm’s idealized Gedankenexperiment. In that paper, however, Bell
made no reference to the experimental status, or even to the experimental testability
of his result. Moreover, Bell’s 1964 [6] Inequality applied only to idealized sys-
tems. To bridge the gap between theory and the real world in which we live,
Clauser, Horne, Shimony, and Holt (CHSH) [12] in 1969 introduced the second
Bell Inequality—the CHSH inequality—and showed that it holds for deterministic
LHVT’s that govern realizable systems. More importantly, unlike Bell’s 1964
result, the CHSH inequality is experimentally testable. CHSH also were the first to
propose an actual experiment to test the Theorem’s predictions.

The extension of Bell’s Theorem to include Objective Local Theories (and Local
Realism) was made by Clauser and Home (CH) [13] in 1974, and these theories were
renamed Local Realism by Clauser and Shimony {15} in 1978. Clauser and Home therein
introduced what is now commonly referred to as the CH inequality. It is experimentally
testable and is loophole free, and is what we herein refer to as an “R-inequality” (see
below). A further discussion clarifying the meaning and scope of Bell’s Theorem fol-
lowed CH in “An Exchange on Local Beables™ [8]—a series of papers by Bell, Shimony,
Home and Clauser. A review of the various proofs and interpretations of Bell’s Theorem,
ﬂwvaﬁmmBeﬂhmﬂi&es.mddwavaihHemdaﬁﬁmfmexpﬂinmmlwsﬁnghgivm
by the Clauser and Shimony (CS) [15] review article.

To violate a Bell inequality and thereby to disprove Local Realism, one must
experimentally examine a two component entangled-state system, in a configuration
that is analogous to Bohm’s Gedankenexperiment. The experiment is done with two
widely separated apparatuses. To be used for a test, the configuration must generate
normalized coincidence rates at these two apparatuses with a measured large
amplitude sinusoidal dependence upon the two adjustable apparatus settings. Proper
normalization of the coincidence rates is critical for the avoidance a loophole.



454 ILF. Clauser

A loophole exists when a counterexample exists that invalidates the experi-
mental test. Loopholes sometimes arise when technology limits just how closely
one can approach the ideal experiment specified by a Bell Inequality. Various
experimental tricks are then generally used, along with associated supplementary
assumptions to plug these loopholes. These added assumptions generally do not
rely on either locality or realism (or quantum mechanics), although it is highly
desirable that they at ‘least be consistent with these theories. To evaluate the
assumptions, one may examine how reasonable a supplementary assumption is,
along with how contrived the associated counterexample is. Such assumptions thus
become the weak point in any argument claiming an experimental disproof of Local
Realism. The obvious question is always offered—are you testing the fundamental
assumptions behind Local Realism, or are you just testing the supplementary
assumption(s)? Fortunately, recent experiments closing the remaining loopholes are
now rendering this last question moot.

The first identified loophole is the so-called “locality loophole”. Curiously, it
was first noted by Bohm and Aharonov [10] in 1957, prior to Bell’s 1964 paper [6].
Under the locality loophole, a hypothetical collusion between the two separated
apparatuses can possibly occur, whereby the apparatuses communicate their set-
tings to each other. Such communication can then possibly can account for the
strange quantum-mechanical predictions associated with the entanglement of
widely separated particles. This possibility was promoted further by Bell in his
1964 paper [6]. Bohm and Aharonov had suggested that a rapid change of the two
apparatuses of Bohm’s Gedankenexperiment, while the entangled-state particles are
in flight, can thereby exclude any such collusion. While this locality-loophole
counterexample may seem somewhat contrived, it has become particularly
important to close it when Bell’s Inequality experimental results are under attack by
malevolent efforts, as may occur when the experimental outcomes are used for
quantum communication and cryptography, for which malevolent forces are well
known to exist (e.g. by eavesdroppers). The first experiment to close this loophole
was performed in 1982 by Aspect, Dalibard, and Roger [4].

The second identified loophole is what we herein call the “normalization
loophole”. It occurs when the measured large amplitude sinusoidal dependence on
adjustable apparatus settings is less than that required for an actual violation of a
Bell Inequality. The so-called “detection loophole” is one of several examples of
the normalization loophole. The detection (normalization) loophole commonly
occurs when low detection efficiency reduces the measured amplitude of the
coincidence-rate variation to below that needed for a violation of a Bell Inequality.

Sometimes the normalization loophole occurs without it even being recognized.
Indeed, the transition from Bell’s 1964 inequality [6] to the CHSH inequality {12]
involved closure of the first example of a normalization loophole, wherein Bell
assumed and indeed required a perfect apparatus correlation. (See the sections “One
Possible Cause for the Normalization Loophole” and “Bell’s 1964 E-Inequality for
Idealized Binary Result Apparatuses” below.) In general, the normalization loop-
hole can be closed only with highly precise apparatus, and with careful count-rate
normalization. It has only been closed recently. Closure of both the locality
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loophole and the normalization loophole simultaneously in a single experiment has
not yet been done, but experiments now in progress promise to do so soon.

Much of the remainder of this paper addresses the normalization loophole. There
are two known routes to plug it—either violate the CHSH inequality using a
heralded source, as was first suggested by Clauser and Shimony (CS) [15] in 1978,
or directly violate the CH inequality [13]. Both routes have met significant technical
difficulties, and both routes require highly efficient detection schemes and highly
efficient high-transmission analyzers (polarizers).

In the section “Bohm’s 1951 Gedankenexperiment and Its Relation to Bell’s
Theorem”, we describe Bohm’s 1951 Gedankenexperiment [9]. It provides a basic
prototype for Bell’s Theorem experiments. In the section “One Possible Cause for
the Normalization Loophole”, we discuss the origin of the normalization loophole.
The loophole’s nature depends on the nature of the associated Bell Inequality being
tested. In deriving a Bell Inequality, there are at least two ways to proceed. One way
is to start directly from observed quantities, such as the number of observed particle
detections (per unit time), then to calculate probabilities for them, and finally to
derive an inequality constraining them that is consistent with the requirements for
locality and realism. This path was followed by CH. It yields the CH Inequality, and
the experiments that it constrains are then inherently free from the
normalization-loophole. It is described in the section “Normalization-Loophole
Free Clauser-Horne (CH) R-Inequality for Binary-Result Apparatuses”. The CH
inequality uses binary-result apparatuses. The 1978 review article by Clauser and
Shimony (CS) [15] describes a variety of alternative methods for deriving the CH
inequality. The CH inequality directly constrains observed count rates, and is thus,
what we herein call an R-inequality, as an abbreviation for count-Rate-inequality.
An R-inequality directly compares one linear combination of measured count rates
with another.

A second method for deriving a Bell Inequality is that originally followed by
Bell and by CHSH. It requires one to first define “result values” (as discussed in the
section “Result Values and Expectation-Value Inequalities (E-Inequalities)”). That
method then provides inequalities that constrain the expectation values for the
various observed results. We call these “E-inequalities”,' as an abbreviation for
Expectation-value-inequalities. The first such E-inequality was derived by Bell in
his original 1964 paper [6}. It is discussed in the section “Bell’s 1964 E-Inequality
for Idealized Binary Result Apparatuses”. The second E-inequality was that by
CHSH [12). It is discussed in the section “Clauser Horne Shimony Holt (CHSH)
E-Inequality for Real Binary Result Apparatuses”. Unfortunately, an E-inequality is
not directly testable, unless it is first converted to an R-inequality. Care must be
exercised when one is performing the conversion in order to avoid unnecessarily
introducing a normalization loophole.

"Historical Note: Both Bell [6] and CHSH [12] use the symbol P rather than E for the expectation
value of the product of the binary result values A and B.Subsequent works generally now use the

symbol E.
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Care must also be exercised in recognizing whether or not one is using
binary-result or ternary-result apparatuses. (See the section “One Possible Cause for
the Normalization Loophole”) Three methods have been used for doing the con-
version. One method, described in section “Clauser Horne Shimony Holt (CHSH)
R-Inequalities for Real Binary-Result Apparatuses via the CHSH Polarizer-Removal
Protocol”, is to use, the CHSH polarizer-removal protocol to get a CHSH
R-inequality. It requires the use of binary-result apparatuses, and it was used for all of
the earliest tests of the CHSH E-and R-inequalities. The protocol consists of mea-
suring coincidence rates with polarizers removed as well as measuring coincidence
rates with polarizers inserted. The former measurements are used to normalize the
latter. Very high transmission polarizers are required for this method to work. Highly
reasonable supplementary assumptions by CHSH and by CH allow this protocol to
provide a very reasonable argument for avoidance of the loophole. Clauser and Home
(CH) [13], however, do provide an ad hoc somewhat contrived counterexample,
discussed in the section “The CH Counterexample”. Thus, a residual normalization
loophole remains with this method, despite the high plausibility of their associated
supplementary assumption and the rather contrived nature of that counterexample.

A second method for converting an E-inequality into an R-inequality is described
in the section “CHSH R-Inequality with Heralding”. It uses a heralded source, and it
was first explicitly suggested by Clauser and Shimony (CS) [15] in 1978. It then
allows one to use the CHSH E-inequality directly to get a loophole-free CHSH R~
inequality. It can use either binary- or ternary-result apparatuses.

A third method for normalizing coincidence rates was first proposed in 1981 by
Garuccio and Rapisarda (GR) [22], and was first used in 1982 in the experiment by
Aspect, Grangier, Roger (AGR) [3]. (See the section ‘“Garuccio and
Rapisarda/Aspect Grangier Roger R-Inequalities for Real Ternary-Resuit Appara-
tuses™.) It uses “ternary-result” apparatuses only. Notably, it allows the use of
highly absorbing polarizers, whereby a violation of an associated R-inequality is
much easier to achieve experimentally. It normalizes the coincidence rates using a
sum of these coincidence rates, and ignores unobserved (and unobservable) events.
Unlike the CHSH polarizer-removal protocol, no polarizers are removed using this
method, and no additional normalizing data need be taken. It also requires a much
stronger supplementary assumption than that required by the CHSH
polarizer-removal protocol. The GR/AGR supplementary assumption is now
commonly (and gratuitously) referred to as the “fair-sampling assumption”. Ger-
hardt et al. [23] provide a convincing experimental demonstration of the ease by
which it can be countered, especially by malevolent efforts, as may occur in “se-
curity related scenarios” and quantum cryptography. Despite the need for these
strong supplementary assumptions, GR/AGR normalization has been used by many
experiments, presumably because of it’s ease of experimental implementation. Its
use has become sufficiently common that it is often cited (incorrectly) as an integral
necessary part of the CHSH E-inequality, despite strident protestations made by this
author at the first Quantum [Un]speakables conference (Clauser [16]). It is not!

We conclude in the section “Some Experimental Results” with a description and
tabulation of various experimental results that test the predictions made by these
various Bell Inequalities.
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Bohm’s 1951 Gedankenexperiment and Its Relation to Bell’s
Theorem

Figure 28.1 shows Bohms’s 1951 Gedankenexperiment (9]. It provides the proto-
type for Bell’s-Theorem discussions. It consists of a highly idealized pair of
binary-result apparatuses interacting with a quantum mechanically entangled
two-particle system. In this Gedankenexperiment, a spin-zero particle decays into a
pair of spin-entangled spin-¥2 particles. Each of these particles, in turn, flies into an
associated rotatable Stern-Gerlach analyzer, where it then follows one of two tra-
jectories, and is detected by one of two associated detectors. For this system, Bohm
[9] and Bell [6] both assume that the following highly idealized requirements hold:

(a) The initial state of the pair is a 100 % pure spin-singlet. (y = singlet =
tl—11 in any coordinate system)

(b) Both particles enter the collimators.

(c) The system’s collimation is perfect and the propagation is loss-free.

(d) The propagation and spin-state selection are depolarization-free, and

(e) Both detectors have 100 % efficiency.

It is important to note, in passing, that these idealized specifications are, in general,
impossible to realize in practice.

We define the result values (see the section “Result Values and Expectation-Value
Inequalities (E-Inequalities)”) at each apparatus A = +1, and B = +1, respec-
tively. With the above idealized specifications, for an ensemble of decaying spin-zero
particles, the quantum mechanical predictions for the probabilities of the four pos-
sible outcomes are

Q.M. =p P(d, B)= AB. =

Fig. 28.1 Bohm’s (9] Gedankenexperiment, that, provides the prototype for Bell's-Theorem
discussions.
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proboy (A =1,B=1)=1/2sin’(ang(a, b)/2),
proboy(A= —1,B= —1) =1/2sin*(ang(a, b)/2),
proboy(A=1,B= — 1) =1/2cos’(ang(a, b)/2),
proboy(A= —1,B= —1)=1/2cos*(ang(a, b)/2),

(1)

where ang(a, b) is the angle between the two Stern-Gerlach analyzer orientations,
and probgm (A = i, B = j) is the probability (as predicted by quantum mechanics)
that apparatus A will yield the result i, and that apparatus B will yield the result j.

It is the large amplitude sinusoidal dependence of Eqs. (1) that is at the heart of
Bell’s Theorem, and it was Bell’s genius to first note that this dependence cannot be
obtained by any local hidden-variables theory, but instead can only be obtained by
quantum mechanics! Bell thus discovered that the large amplitude sinusoidal
dependence in Egs. (1) is strictly peculiar to quantum-mechanical entangled-state
systems. He further discovered that virtually any reasonable attempt to model the
behavior of Bohm’s Gedankenexperiment via hidden-variables gave instead, a
strange non-sinusoidal result, and/or a low amplitude result that is very different
from that given by Egs. (1).

Bell’s observation thus became the inspiration for experimentalists, who, in turn,
wondered if nature really behaves the way quantumn mechanics strangely predicts
here. Relaxation of the ideal specifications for this Gedankenexperiment, in turn,
reduces the amplitude of this sinusoidal dependence, whereupon a normalization
loophole can result when the relaxation goes too far. In practice, very little relax-
ation from the ideal can be tolerated.

One Possible Cause for the Normalization Loophole

An important but frequently overlooked feature of Bohm’s Gedankenexperiment is
that each apparatus provides the binary result, +1. Thus, for the two apparatuses
and a given pair of spin-entangled particles, there are then only four possible
outcomes, and four associated probabilities. For any set of probabilities to be
sensible, and for Bell's Theorem to obtain, the sum of these four probabilities must
be normalized to one. That is, we must have

Y -4 Xj=s1 Prob(A(a) =i,B(b)=j) =1, for all a,b. 2)

We note here that this normalization condition holds for the quantumn mechanical
predictions of Egs. (1).

One can measure the various prob(A(a) = i, B(b) = j) experimentally from
event frequencies. To do so, one needs the total number of i, j events, N(A(a) = i, B
(b) = j), normalized by the total number N of emitted-pair events. Then, if and only
if all events are properly accounted for, the above normalization condition becomes
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Zi==| Ej_*l N(A(a)=i,B(b)=j)=N, for all a,b. (3)

We further note that if there are missing non-zero terms in these summations, then
the normalization condition of Eq. (3) does not hold.

Now consider any actual realization of Bohm’s Gedankenexperiment. There, we
really have temnary-result rather than binary-result apparatuses. In practice, one or
both of the particles will fail to enter the collimators. Additionally, any real detector
will sometimes fail to detect a particle entering it, and/or will sometimes falsely
detect a particle, even when one is not present (a “dark-count”). As a result, there will
be un-paired detections at the two apparatuses and/or totally missing paired detec-
tions. Correspondingly, for any realization of Bohm’s Gedankenexperiment we
really have the possible outcomes for each apparatus as being one of three possi-
bilities: +1, —1, and No-detection (with no result-value, as yet, assigned to this
possibility). For binary-result apparatuses, there are 4 nonzero terms in the above
double summations. For ternary-result apparatuses, however, there are 9 nonzero
terms. Unfortunately, at most, only 8 of those 9 can be observed by the two appa-
ratuses, since the 9th term is a probability of nothing happening at both apparatuses.

Of course the value of the 9th unobserved term can be determined via an a priori
knowledge of N by using Eq. (3). This latter possibility is now commonly referred to as
“heralding”, wherein the source apparatus signals (heralds) that a particle pair has been
emitted and is ready for analysis and detection. The possible use of said heralding
measurements was first noted by Clauser and Shimony (CS) [15], and was therein given
the name “event-ready detectors”. (The modemn term “heralding” had not yet been
invented in 1978.) It is discussed in the section “CHSH R-Inequality with Heralding”.

A simpler alternative to the use of heralding was offered by CH [13]. They avoid
a need for knowing the value of N by producing a Bell Inequality that only involves
ratios of the various N(A(a) = i, B(b) = j), whereupon the unknown value of N
cancels out! Worries about unobserved particles may seem unimportant until one
recognizes that in the earliest realizations of Bohm’s Gedankenexperiment, the
overwhelming majority of emitted pairs were, in fact, wholly or partially unob-
served. The ratio of paired (coincident events) to unpaired detections (“singles
events”) detections was about 10™3, while the ratio of the number of paired (co-
incident events) to the number of emitted particle pairs was about 1075, Only now,
nearly 5 decades later have experiments evolved to the point where these event rates
are all of comparable orders of magnitude.

Normalization-Loophole Free Clauser-llorne
(CH) R-Inequality for Binary-Result Apparamsm

Clauser and Horne (CH) [13] start from an experimental arrangement that is slightly
different from that of Fig, 28.1. It is shown in Fig. 28.2. It is configured to auto-
matically enforce the above-noted need for bma:y results. A source at the center
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Fig. 282 Clauser and Horne's configuration for Bell’s inequality experiments us‘uig binary-result
apparatuses. Figure from Clauser and Shimony [14].

emits pairs of particles. The source is viewed by two apparatuses, named 1 and 2.
Each apparatus consists of an adjustable attenuating analyzer and an associated
single detector. A particle of the pair can pass through one of the analyzers, wherein
after it is or is not detected by the associated detector. By the design of the
experimental layout, only binary events, i.e. detection or non-detection events, can
occur at each apparatus.

The CH derivation of Bell’s Theorem and of the CH inequality starts by using
directly observed event rates. In the apparatus of Fig. 28.2, one measures an
individual detector’s detection rate, and also simuitaneously measures the (*“coin-
cident™) paired detection rate of the two detectors. During a long period of time, t,
the source emits say N of the two particle systems of interest. For this period,
denote by Nj(a) and N(b) the number of detections at detectors 1 and 2 respec-
tively, and by Nya(a, b) the number of nearly simultaneous (coincident) detections
at the two detectors. From these numbers of detections, when sufficiently large, one
may correspondingly define (measure) the ensemble probabilities

p;(a)=N;(a)/N,
p2(b) =Nz(b)/N, (4)
p12(a,b) =Nix(a,b)/N.

Here, ;- is the probability of joint (coincident) detections by both detectors; p; is
the probability of a detection by detector 1, independently of what happens at
detector 2; and p, is the probability of a detection by detector 2, independently of
what happens at detector 1. :

CH showed that the probabilities associated with correlated particle pairs that are
described by any Local Realistic Theory (i.e. one that describes pairs of localized
objects—see the Appendix), are constrained by the following inequality:

-1<pp(a,b)—pyz(a,b) +p12(a’,b) +pjy(a,br) — p,(a’) — p,(b) 0. (5)
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The left-hand inequality requires careful normalization of these probabilities (i.e. it
requires one to know N), but the right-hand inequality does not! It is independent of
N. Via Egs. (4) one then has

-N _‘S,Nu(ﬂ., b) —Nm(a, b ) +N12(a' .b) + le(ﬂ’ s b‘) -N; (a') —Nz(b) <0. (6)
Dividing by t finally gives the associated CH R-inequality

~ Rsouce <Ri2(a,b) —Rp2(a, b} +R2(2,b) +Ryz(@, b ) —r1(2°) —r2(b) <0,
‘ (M

where, Ry»(a,b) is the coincidence detection rate for the two detectors, and ry(a’)
and ry(b) are respectively the individual singles detection rate at detectors I and 2.
The quantity Rsource is the source rate, which may be used if it has been measured
via heralding. (See the section “CHSH R-Inequality with Heralding”.) For exper-
iments where a heralded source is not employed, one may rewrite the right-hand
side of Ineq. (7) as

[Ru(a, l)) - ng(a, b’) + R[z(ﬂ', b) + R]z(a' b )]/[1'1 (a’) + Iz(b)] <1. (7')

Here, the singles rates r; and r,, are used to normalize the sum of four R;, coin-
cidence rates. The minus sign preceding the second R, term in the numerator may
be permuted among any of the four terms and Ineq. (7°) still holds.

Inequalities (5)—(7") are known as the CH inequalities. The CH R-inequality (7°)
is noteworthy in that it gets its normalization by using only the number of singles
events at the two detectors. So doing, it provides a Bell Inequality that does not rely
on the value of N (or Rgource), that is usually difficult to measure. Thereby Ineq. (7°)
is self-normalizing. The good news associated with the CH inequality is that the
influence of N (or Rgouce) Vvanishes, and the inequality is
normalization-loopholefree. The bad news is that from an experimental viewpoint,
the CH inequality is very difficult to violate. For low detector efficiencies and/or for
small solid-angle collection efficiencies, the singles rates r; and r; are typically very
much larger than R;,, (by a factor of about 10° for the typical cascade-photon
experiments), Ineq. (7°) is then automatically satisfied, whereupon no
normalization-loophole free experiment can then be done.

For these (and for all other Bell Inequalities), it is generally necessary to perform
a sequence of different experiments and compare their different results. In the
present case there are four required experiments, at each of the respective analyzer
orientation pairs, (a,b), (a,b’), (a’,b), and (a’,b’). Additionally, measurements must
also be taken of the normalizing singles count rates r, and r, at angles &’ and b,
respectively, although these measurements are usually already obtained simulta-
neously during the coincidence rate measurements. ]

The experimental difficulties associated with designing an experiment to violate
Ineq. (7°) were lessened significantly by an observation made by Eberhard [17] in
1993. When the quantum state of the particle pair is maximally entangled, the
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singles rates ry(a’) and ry(b) in Ineq. (7°) are constan. (i.e. independent of @’ an’d .b).
On the other hand. Eberhard noted that there is no need for the n(‘)n'na.hz.m‘g
denominator in Ineq. (7°) to be constant, If the quantum state of the particle pair is
not maximally entangled, then at least one of these two singles rates may be made
small, and Ineq. (7°) is more readily violated. Eberhard’s obse'rvallon h.as l.ed to the
recent experimentally observed violations of the CH inequality by Giustina et al.
d by Christensen et al. [11].

[24]Claal:15eryand Shimony [15] show in their review article that the methods of proof
of Bell’s Theorem used by Wigner [41], Bell [7], Belinfante [5]. and’ qut [(26] Cfi[l
all lead to the CH inequality. CS further note that the CHSH ine_quahty ‘15 a specgal
case of the CH inequality, and that Bell’s 1964 inequality (6] in tum is a special
case of the CHSH inequality.

Result Values and Expectation-Value Inequalities
(E-Inequalities)

Bell’s original 1964 inequality and the CHSH inequality are both in a form that
constrains expectation values for observed “result values”. Herein, we refer to these
as E-inequalities. The expectation values are calculated using previously defined
“result values”, What is a “result value”, and why is it needed? To some extent, for
Bell’s Theorem, result values are only a historical artifact, and, as noted above in
the section “Normalization-Loophole Free Clauser-Hormne (CH) R-Inequality for
Binary-Result Apparatuses”, Bell Inequalities can be derived without invoking
them. One may ask, where did they come from?

Bohm was discussing the quantum theory of the measurement process and the
Einstein, Podolsky, and Rosen [19) paradox when he introduced his 1951
Gedankenexperiment of Fig. 28.1. In such a discussion, it is presumably necessary
to assert that something is actually being “measured”. Whatever is being measured.
then should have a “result value” that is to be determined by the “measurement”.
The assumptions underlying Bell’s Theorem, on the other hand, do not depend on
whether or not something is being measured. In fully general LHVT’s or Local
Realistic Theories, one really does not have the faintest idea about what one i
doing on a microscopic level when one performs a given experiment. Indeed. a
dispute over what is happening internally in such an experiment (or indeed. it
anything is happening at all on a microscopic level, as Bohr insisted) is at the ven
heart of any fully general theory that is an alternative to or consistent with quantum
mechanics. Recall that the Copenhagen interpretation of quantum mechanics asserts
that there is no possible explanation of the microphysics of Bohm’s Gedankenex-
periment, whereupon it would seem to be highly presumptuous to assert that one
knows what one is measuring! Correspondingly, for a discussion of Bell’s Theo-
rem, the result values A, B = +1 chosen by Bohm and Bell are perfectly arbitrary
Mostly, they simply provide names like Tom, Dick, Harry, +1, 0, spin-up, top.
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beauty, and +h/2, etc. for the possible experimental outcomes. Indeed, the CH
inequality which governs Local Realism dispenses with the use of result values
altogether!

For a discussion of Bell’s Theorem, however, CHSH and Bell did find some
utility in defining result-values. If the result values have integer numerical values,
then they may be used as indices in summations. Result values also allow one to
construct expectation values for these results, which then lead to E-inequalities.
Additionally, expectation values are readily calculated using quantum mechanics
via matrix elements. Then, as long as care is exercised in converting said
E-inequality into a useful R-inequality, result values serve their purpose.

The expectation value of the product of the binary-result values for A and B is
also known as the correlation function of these two values. For Bohm’s 1951
Gedankenexperiment, it is given by

E(a,b)= <AB> = Y, ._., A(a)B(b) prob(A(a) =i, B(b) =j). (8)

Using Egs. (1), one can calculate the quantum mechanical prediction for this
correlation function for Bohm’s idealized Gedankenexperiment of Fig. 28.1 as

Equ(a,b)= —a-b. (9)

In order to measure E(a, b) for use in the CHSH inequality, one must measure the
various prob(A(a) = i, B(b) = j), for all i and j in a ternary result experiment, i.e. a
realization of Bohm’s 1951 Gedankenexperiment. To do so using event frequencies,
one needs (for sufficiently large N)

prob(A(a) =i, B(b) =j) =N(A(a) =i,B(b) =j)/Tay; Tan; N(A(a) =i, B(b) =j)
(10) .

where the double summation in the denominator must be taken over all possible
values of i and j.

As we have noted above, this cannot be done without a knowledge of N. The
possible routes are then

1. Ignore details of a realization of Bohm’s Gedankenexperiment, and thereby
ignore the normalization loophole, as was done by Bell [6], 1964 (See the
section “Bell’s 1964 E-Inequality for Idealized Binary Result Apparatuses”).

2. Use the CH experimental configuration of Fig. 28.2 and define “Detection” and
“NoDetection” to be the binary results needed. This option only works with very
high detection efficiency, and was used first experimentally by Giustina et al.
[24] and by Christensen et al. [11].

3. Use the Bell experimental configuration described in the section “CHSH
R-Inequality With Heralding” and measure N via heralding, as was done
experimentally by Rowe et al. [35] and by Matsukevitch et al. [33].
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4. Use the CH experimental configuration of Fig. 28.2 and the polarizer-removal
protocol given by CHSH, along with the associated CH supplementary
assumption. This option was used by the earliest Bell’s Inequality experimental
tests, the first of which was by Freedman and Clauser [20].

5. Bypass the normalization loophole' by employing a supplementary assumption
that is much stronger than that needed by the polarizer-removal protocol. This
method is herein referred to as GR/AGR normalization (See the section
“Garuccio and Rapisarda/Aspect Grangier  Roger R-Inequalities for Real
Temary-Result Apparatuses”). It was first used experimentally by Aspect,
Grangier and Roger (AGR) [3] in 1982.

Bell’s 1964 E-Inequality for Idealized Binary Result
Apparatuses

Bell’s original 1964 paper [6] considered Bohm's idealized Gedankenexperiment,
and assumed the idealized specifications as listed above in the section “Bohm’s
1951 Gedankenexperiment and Its Relation to Bell’s Theorem”. Given these
specifications, he noted (indeed he required) that the quantum mechanical predic-
tion for parallel analyzers has the value

E(a,a)= -1. (11)

Bell assumed Eq. (11) to hold exactly for at least one value of a. This assumption
thus requires that for that value of a, the Gedankenexperiment must exhibit a perfect
correlation. Using this assumption, he first notes that determinism follows directly
from it for the Gedankenexperiment. In addition, using these assumptions, he goes
on to show that no Local Hidden Variables Theory (LHVT) can give the quantum
mechanical prediction for Bohm’s idealized Gedankenexperiment. He does so by
showing that the inequality

1 + Eunvr(b, €) 2 [Epavr(a, b) — Ernvr(a, ¢, (12)

holds for any LHVT. Surprisingly, he discovers that the quantum-mechanical
prediction for this system given by Eq. (9) does not satisfy Ineq. (12) for a sig-
nificant range of a and b.

Unfortunately, Bell’s mathematical analysis applies only to totally idealized
systems, as per the discussion of the section “Bohm’s 1951 Gedankenexperiment
and Its Relation to Bell's Theorem”, above. With even an infinitesimal departure
from the perfect system described in that section, his mathematical arguments fail.
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Here, it is perhaps appropriate to invoke Ben Franklin’s famous observation:
“The only predictions that can be made with certainty are for death and taxes.”

From a physicist's standpoint, Ben Franklin’s observation can be paraphrased
(interpreted) to mean

If a theoretical argument relies on predictions that must obtain with certainty, but said

predictions can never obtain in reality, then that argument applies only to a vanishing subset

of reality that never occurs, whereupon the argument applics to nothing at all, and thus may

be disregarded.
CHSH noted that Bell’s argument requires Eq. (11) to hold exactly for at least one
value of a. However, since Eq. (11) is not equivalent to either death or taxes, then it
never obtains for any realizable (or real) systems. Correspondingly, Bell’s argument
(as it stands) does not apply to any realizable (or real) systems. Unfortunately,
without the constraint by Eq. (11), for at least one value of a, Bell’s mathematical
argument fails. Fortunately, despite the above paraphrasing of Ben Franklin, Bell's
mathematical reliance on Eq. (11) by no means implies that Bell’s result may be
disregarded. CHSH show that Eq. (11) is not a necessary requirement for a useful
(but different) Bell Inequality to be derived via an alternative mathematical
argument.

Clauser Horne Shimony Holt (CHSH) E-Inequality for Real
Binary Result Apparatuses

CHSH first showed that for systems that do not comply with the unrealizable
specifications outlined in the section “Bohm’s 1951 Gedankenexperiment and Its
Relation to Bell’s Theorem” for Bohm’s Gedankenexperiment, and especially for
systems that do not comply with the unrealizable restriction of Eq. (11), then an
alternative inequality can be written that does apply to realizable systems. CHSH
show that all deterministic local hidden variable theories are constrained by the
alternative E-inequality for real binary result apparatuses,

|[E(a,b) —E(a,¢)| <2-E(b’,b) —E(b, ¢). (13)

Shimony [37] further pointed out that Ineq. (13) can be rewritten as
~2<E(a,b)-E(a,b>) +E(a’,b) +E(a’,b’) £ 2, (14)
wherein the single minus sign may be permuted among the” four terms. Unlike
Bell's original inequality (12), the CHSH Ineq. (14) -applies to realizable systems.

The LHVT subscript has been dropped because CH subsequently showed that Ineq.
(14) also holds for the more general theories of Local Realism,
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Clauser Horne Shimony Holt (CHSH) R-Inequalities for Real
Binary-Result Apparatuses via the CHSH Polarizer-Removal
Protocol o _

Since Bell [6] did not addréss ejther the experimental status or the testability of his
results, Clauser Horne Shimony Holt (CHSH) [12] in 1969 pursued those issues.
Armed with Ineq. (14), they first noted that there were no existing experimental data
available for comparison with Ineq. (14). They then proposed a real experiment to
fill this gap and to actually test Ineq. (14). Their proposed experiment was for a
modification of an experiment that had been performed two years earlier by Kocher
and Commins [28].

In the CHSH-proposed experiment, two polarization-entangled photons are
emitted by an atomic-cascade decay. High efficiency linear polarizers are then used
to analyze the entangled photons. These polarizers then replace the Stern Gerlach
analyzers of Bohm’s Gedankenexperiment. To maintain binary-result apparatuses,
CHSH use the apparatus configuration of Fig. 28.2. They first propose using the
associated result values Detection = +1, NoDetection = —1. Unfortunately, with
the technology and detector efficiencies available in 1969, it was still not possible to
violate Ineq. (I14) using those definitions. Undeterred, CHSH introduce the
polarizer-removal protocol. Under this protocol, coincidence rates are measured
with both polarizers in place as a function of the polarizer orientations. Addition-
ally, coincidence rates are measured with one polarizer, or the other, or both
polarizers removed. The needed multiplicity of experiments, i.e. experiments with
polarizer(s) removed and with polarizers inserted at the various needed orientations,
are all performed in such a manner that the source rate and the effective detector
acceptance solid-angles remain unchanged among them. CHSH modify the result
definitions from Detection/ No Detection to Passage/ NoPassage of the photons
through the polarizers. CHSH then offer the following supplementary assumption:

Given the emergence of a pair of photons from the associated pair of analyzers, we assume
that the joint detection probability is independent of the analyzer orientations a and b.

Using the polarizer-removal protocol and the CHSH (or CH—see below) sup-
plementary assumption, one can then write for the correlation function

E(a,b) =1+4 [R(a,b) —2R(a, ) — 2R(c0, b)] /R{00, ), (15)

where the symbol, co, denotes the exceptional case when a polarizer has been
removed. The associated measured coincidence detection rates may be abbreviated

as
R(a,c0) =R;(a),

R(c0,b) =Rz(b), (16)
R(o0, 00) =Ry.
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Further, assuming that R;(a) = R;, and that Ry(b) = R are both measured to be
constant and respectively independent of a and b, then CHSH show that (13)—(16)
can be combined to yield the CHSH R-inequality

[R(a,b) —R(a,c)| +R(b’.b) +R(b’,c) - Ry ~ Rz <0. (17)

Also, when a and b are the scalar angles a and b, as shown in Fig. 28.2, and
when it is experimentally demonstrated that the coincidence rate R(a,b) only
depends on the angle @ = ang(a,b) between the polarizers, as per

R(a,b) =R(®), (18)
then Ineq. (17) can be written as
—Ro <3R(®) -R(3®) ~R; =R, <0. (19)

Freedman [18] further noted that if one takes the optimal value ® = x/8 for
maximal violation of (19) by cascade-photon experiments, then a particularly
compact form of a Bell R-inequality results, as per

[R(zB8) ~R(3x8)|/Ro < 1/4. (20)

Here, the coincidence rate with polarizers in place, R (®) is normalized by the
coincidence rate with polarizers removed, Ro. Significant utility is provided by this
compact form in that only three independent coincidence rates need be measured
for it to be tested, although it is still necessary to verify the required rotational
invariance of R(®). Such rotational invariance can be assured, however, by simply
averaging the R(®) measurement over common rotations of the pair of analyzers.

Freedman’s version of the CHSH inequality is noteworthy in that it provides a
somewhat graphic measure of the minimum sinusoidal amplitude variation of the
normalized coincidence rate that is needed to violate a Bell Inequality. It also
graphically indicates that if R(®) in Ineq. (20) is normalized by a coincidence rate
other than Rg, say by a smaller rate, then a larger violation occurs, and a violation
may then occur where it otherwise would not. On the other hand, if the magnitude
of R(®) is significantly diminished, say by even modest absorption by the polar-
izers, then no violation of Ineq. (20) can occur, and the experimental configuration
is insufficient to test a Bell Inequality. Thus, violation or no-violation of the CHSH
inequality critically depends on the count-rate’s normalization.

The experimental requirements for a violation of Inegs. (17), (19) or (20) are
highly demanding upon the required polarizer quality.. Those requirements are
specified quantitatively by CHSH for their proposed experiment. That experiment
was first performed by Freedman and Clauser in [20]. They found that the only
available polarizers (in 1972) meeting the requirements for very low absorption
were the pile-of-plates variety. Most other early experiments testing the CHSH
inequality followed their example, and also used pile-of-plates polarizers.
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Clauser and Home (CH) [13] significantly improve upon the CHSH supple-
mentary assumption. They thus provide a much weaker supplementary assumption
that leads to the same result as that by CHSH. CH call their improved supple-
mentary assumption the “no-enhancement” assumption. It is the following:

We assume that the prescnce of an analyzer does not somehow enhance (increase) a
particle’s probability of detection. relative to the probability of its detection with the
polarizer absent.

Under the CH no-enhancement assumption. and with the polarizer-removal pro-
tocol, the CH Ineq. (5), discussed in the section “Normalization-Loophole Free
Clauser-Home (CH) R-Inequality for Binary-Result Apparatuses” above, reduces to
the CHSH R-inequality predictions Inegs. (17)—(20), whereupon the
Freedman-Clauser experiment [20] refutes Local Realism (but is still, of course,
subject to the locality loophole).

The CH Counterexample

Clauser and Home [13], provide an ad hoc counterexample that employs
enhancement and that can predict the Freedman-Clauser [20] results. Thus, despite
the high plausibility of the associated CH supplementary assumption, their coun-
terexample shows that the no-enhancement assumption (or some other assumption)
is still needed for experiments that use the polarizer-removal protocol in order to
evade the normalization loophole. Under the CH counterexample, the normalization
loophole is carefully exploited, in a somewhat pathological manner. Low detection
efficiency may be present in the system for a variety of reasons. The CH coun-
terexample carefully exploits the low efficiency produced by absorbing polarizers
and other losses to “collude” with the detectors to generate an anomalous violation
of the CHSH R-inequality by a Local Realistic theory. Under the CH counterex-
ample, some photons passing through a polarizer have diminished detection
probability, i.e. their detection probability is attenuated. Other photons passing
through the polarizer have increased detection probability, i.e. their detection
probability is “enhanced”, or supercharged. Recall that the CH supplementary
assumption (see the section “Clauser Home Shimony Holt (CHSH) R-Inequalities
for Real Binary-Result Apparatuses via the CHSH Polarizer-Removal Protocol”)
specifies that this latter enhancement process does not occur. In the CH coun-
terexample, the polarizer and detector collude with each other to create an
anomalous violation. While such *collusion” seems pathological, it should be noted
that similar collusion was taken seriously when one considered tests of the locality
loophole, as mentioned above. A major difference here is that the malevolent force
providing the collusion, as mentioned above, now must be nature, herself, rather
than that by a determined cryptography eavesdropper.

Marshal et al. [31] offer a counterexample that is vaguely similar to the CH
counterexample. While the CH counterexample generates an exactly sinusoidal
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variation of the coincidence rate as a function of polarizer orientation, the
Marshal-Santos-Selleri counterexample generates a non-sinusoidal variation that
would have been readily apparent in the experimental data, which they claim “fits
the existing data as closely as the quantum-mechanical model.” Scrutiny of their
model’s prediction, however, reveals their claim to be false, at least for the “existing
data” from the Freedman Clauser [20] experiment.

CHSH R-Inequality with Heralding

Bell in his 1971 paper [7] continued to use Bohm’s ternary-result Gedankenex-
periment that he used in his 1964 paper [6]. In this second paper, he acknowledged
the CHSH assertion that one must account for the failure of one or both of the
apparatuses to detect a particle. To handle this situation, he first showed that the
CHSH E-inequality obtains as long as the result-values A and B are defined such
that IAl < 1 and IBI < 1. Correspondingly, he proposed the definitions,

A,B =+1 Detections, and 0 =No Detection, (20)

for use with ternary-result apparatuses. Clauser and Home [13], in their
Appendix B, however, show that Bell's scheme will not work in an actual exper-
imental context, because it requires measuring events where nothing happens. It
eventually became clear (private communication between CH and Bell) that Bell
was tacitly assuming that “it was already known (by some unspecified means) that a
particle pair was emitted into the associated detector entrance solid angles”,
whereupon accountability of the unobserved events is then possible. Clauser and
Shimony [15] thus clarified Bell’s [7] proposed scheme by depicting “Bell’s con-
figuration”, as shown in Fig. 28.3, and contrasting it with the “CH configuration” of

Spin {2} “up’”” detector Spin (1} “up™ dlﬂ:l:l
By =+1 “Event ready” detectors A, b
' Anslyzer ,
e

x x

x
wis
. s
-~ Source
Neither detector e —— z _ Neither datector
B,~0 - A,=0

= Analyzer2 Analyzer 1N
¥ ~

Y
Spin (2} "down" detector ’ Colncidence Q

By, = -1 E circuit . Spin (1) “down" detactor

. Ay=-1
e i i

Apparatus 2 Detector gate signais Apparatus 1

Fig. 28.3 Bell’ configuration for Bell's inequality experiments using ternary-result apparatuses
and source heralding. Figure from Clauser and Shimony [14].
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Fig. 28.2. Thus explicitly clarified, Bell’s configuration includes “event-ready”
detectors as a means foF specifitally knowing that a particle pair has been emitted
into the associated detector entrance solid angles. Subsequently, the term “herald-
ing” has been coined to describe this process.

In order to use heralding and Bell’s [7] result-value definitions in the CHSH
E-inequality (14) with an experiment that uses ternary-result apparatuses, one may
rewrite Eq. (8) for temary-result apparatuses as

E(a' b)= <AB> = },_ —I,U,l Zj: _1.0,1 A(a)B(b) prob(A(a) =i, B(b) =j).
| 1)

The probabilities appearing in Eq. (21) may now be measured using observed
count rates via .

prob(A(a) =i, B(b) =j) =R(A(a) =i, B(b) =j)/Rsource, (22)

where Rgource is the source rate, as measured via heralding. To be sure, some of the
needed detection rates in Eqgs. (21) and (22) are unmeasured, i.e. those for i = 0
and/or j =0, and thus are not known. However, since their contributions to
Eq. (21) have zero for their associated coefficients in Eq. (21), their unknown
values are of no importance. The expectation values needed for the CHSH
E-inequality (14) are now fully determined by observed detection rates, and are
given by

E(a,b)= R+, + (a,h) +R_ - (a,b)—R.. - (a,b) ~R_. (8,b)] /Rsources (23)

where the following shorthand notation is used: R;, ; = R(A(a) = i, B(b) = ).

Garuccio and Rapisarda/Aspect Grangier Roger
R-Inequalities for Real Ternary-Result Apparatuses

Garuccio and Rapisarda (GR) [22] in 1981 proposed a new method for normalizing
coincidence rates for “ternary-result” apparatuses without the associated require-
ment for heralding. Thereby they provide a new R-inequality, that was first tested
experimentally by Aspect, Grangier, Roger (AGR) [3] in 1982. These efforts pro-
ceeded despite known difficulties for ternary-result apparatuses, as found earlier by
CH [13) and by CS [16). Recall that Bell had originally proposed the use of
ternary-result apparatuses, first, inadvertently, in 1964, and again, advertently, in
1971 [7] (see the section “CHSH R-Inequality with Heralding”). In his 1971 paper,
Bell thus proposed using the temary-result values (+1, ~1, and 0), wherein 0
represents unobserved No-Detection events in the CHSH E-inequality. Unfortu-
nately, he did not offer an associated testable R-inequality. He tacitly assumed that
source heralding was being used, although he did not specifically say so. However,
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CH [13] (see their Appendix B) reanalyzed Bell’s 1971 proposal [7] and found that,
no loophole-free testable R-inequality can be generated for such systems, because
they require the measurement of a probability of nothing happening, which cannot
be done without knowing the associated probability of something happening.
Knowing the latter then requires knowing the source rate, Rgource, (€.8. via a her-
alded source). CH show that, alternatively, one may convert each ternary-result
apparatus into a binary-result apparatus, “at the very beginning of the derivation”,
and then use the CH inequality. CH pointed out that such conversion can be
accomplished, for example, by combining the No-Detection “0” channels with say
the -1 Detection channels at each apparatus, and then by looking only at the +1
Detection channels. Such a conversion is tantamount to simply ignoring the -1
detections. CH show that by doing so, one can then generate a CH inequality (using
Bell’s method of proof) that involves only (+1,+1) detections. Actually, depending
upon which pair of channels one chooses to ignore, one can alternatively generate
four independent CH inequalities for each of the (+1,+1), (=1, =1), (=1,+1), and
(+1, —1) channels. Of course, such a conversion destroys any symmetry between
the (+1,+1) channels and the partly unobserved (—1 & 0, —1 & 0) channels. But, of
course, neither locality, nor realism, nor quantum mechanics have any need or
requirement for experiment symmetry.

CH inequalities generated by ignoring channels were still not testable using the
technology available in 1982, i.e. by using low quantum-efficiency photomultiplier
tube detectors and atomic-cascade decay entangled-photon sources. With 1982
technology, some additional experimental protocol and set of supplementary
assumptions was thus still needed for testing ternary-result apparatus experiments.

Despite these known difficulties for ternary-result apparatus experiments,
Aspect, Grangier, Roger (AGR) [3] in 1982 attempted to build a ternary-result
apparatus for testing a Bell Inequality by using a supplementary assumption pro-
posed earlier by Garuccio and Rapisarda [22]. As a starting point, GR/AGR use the
CHSH E-inequality (14),

—2<E(a,b)—E(a,b’) +E(a’,b) +E(a’,b") < 2. (14)

Their experiment uses the Bell’s configuration of Fig. 28.2, except that it does not
include the “event-ready detectors” used for heralding by that configuration.

In the section “One Possible Cause for the Normalization Loophole” above, we
note that a ternary-result apparatus experiment requires one to know the values of
nine independent coincidence rates, wherein their sum can be used for probability
normalization. In. the AGR experiment, however, only four coincidence rates are
measured. Using Bell’s [7] ternary-result values, (+1, -1, and 0), where O repre-
sents unobserved No-Detection events, the four coincidence rates measured by
AGR are -

R..(a, b) = (A = +1, B = +1) observed coincidence rate,

R_ (a,b) = (A = -1, B = ~1) observed coincidence rate,

R..(a, b) = (A = +1, B = —~1) observed coincidence rate,

R..(a, b) = (A = -1, B = +1) observed coincidence rate.
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The other five (needed) coincidence rates that AGR do not measure are;

R,o(a. b) = (A = +1, B = 0) unobserved “coincidence” rate,
Ro.(a. b) = (A =0, B = +1) unobserved “coincidence” rate,
Ro(a. b) = (A = —~1, B = 0) unobsefved “coincidence” rate,
Ro(a, b) = (A =0, B = ~1)-unobserved “coincidence”™ rate,
Roo(a, b) = (A = 0, B = 0) unobserved “coincidence” rate.

While the first four of these last five could, in fact, have been determined from
the singles rates, that last one of these five, i.e. the (NoDetection, NoDetection)
coincidence rate cannot be measured.

As per the discussion of the section “Result Values and Expectation-Value
Inequalities (E-Inequalities)” above, the appropriate expectation value for use in the
CHSH E-inequality (14) is

R++ +R__ —R.q.._ -R_ + +0 )( [R+0+R-0+RQ+ +R-()— +Rm]
Ecusn(ab) = — R R, +R_. + R
++ - + - -+ +0+R_0+Ro+ +Ro- +Roo)
_ R.|'.++R.___R+_._R-.+
"Ry++R__+R,_+R_,+[R40+R_o+Rgs +Ro- +Rgo}
(24)

To make their results testable, AGR use the GR normalization scheme and arbi-
trarily set equal to zero the term in square brackets in the normalizing denominator
that includes the five unobserved rates. So doing, they define

R++(a,b) +R_ _.(n;b]-R+_(a,b)"R_+(a,b)
R:+(ab)+R-_(ab)+R,_(ab)+R_.(ab)’

Ecr/cr(a, b) (25)

The CHSH E-inequality (14) and GR/AGR’s definition (25) are then combined to
produce a new GR/AGR R-inequality, which was then violated by their experi-
mental data.

We note, however, that the deleted term in square brackets in the denominator of
Eq. (24) is very much larger than the remaining terms by a factor of about 105,
when it is used with an experiment that uses an atomic cascade photon source and
photomultiplier tube detectors, as did the AGR [3] experiment. Correspondingly,
omission of that very large term by GR/AGR deserves careful scrutiny, especially
since it represents a dramatic renormalization (by a factor of about 10%). Without the
term’s deletion, it would be impossible for Egr/acr(a,b) as given by Eq. (25), to
violate (14).

GR and AGR state that

...we assume that the ensemble of actually detected pairs is a faithful example of all emitted
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The GR/AGR assumption is now commonly and “gratuitously” referred to as the
“fair-sampling assumption”. This author’s use of the description “gratuitous” will
now be justified.

Let us examine the implications of GR/AGR's so-called “fair-sampling
assumption”. An important issue is whether or not it is consistent with the
requirements and/or the assumptions underlying either quantum mechanics and
Local Realism. In particular, one must first consider whether or not this supple-
mentary assumption tacitlyor explicitly assumes/requires that all detected events
have the same a priori probability of detection.

The GR/AGR assumption takes a particle-centric view of wave-particle duality /
wave-particle ambiguity, which asserts an equivalence of the wave and particle
viewpoints in quantum mechanics, but leaves vague and/or ambiguous the mech-
anism providing said equivalence. In a wave-centric viewpoint, the inverse square
law for detected flux versus source-to-detector distance is due to diminished wave
amplitude with increasing distance, and an associated diminished detection prob-
ability with said diminished amplitude. However, in a particle-centric view, it is due
instead to a diminished geometrically diluted particle flux. In a particle centric view,
particle detection probability is always constant, given a particle’s presence at a
detector. On the other hand, in a wave-centric view, particle detection probability is
variable and depends on wave amplitude. Wave amplitude at each detector, in turn,
may depend on the associated analyzer’s orientation.

Consider first an assumption underlying quantum mechanics. Under Born’s rule
for calculating probabilities, a particle’s detection probability is proportional to the
absolute square of its probability amplitude. Particles that pass through polarization
analyzers at differing orientations will have different transmitted probability
amplitudes. Correspondingly, not all particles arriving at a detector will have the
same probability amplitude or the same a priori detection probability. Thus, under a
fundamental requirement by quantum mechanics, different events must be allowed
to have different a priori detection probabilities. Any reasonable supplementary
assumption used for a Bell’s Inequality test must correspondingly allow for and be
consistent with this possibility. GR/AGR instead assume particle detection proba-
bility is always constant, and a fortiori exclude theories with variable detection
probability (including quantum mechanics).

Next consider a straightforward local realistic theory in which a photon is
modeled simply as a short-pulse (or wave packet) of classical electromagnetic
radiation. Under this theory, for example, one may assume that the semiclassical
model for the photoelectric effect proposed by Lamb and Scully {30] holds. Then a
pulse with a large classical amplitude will have a higher probability of generating a
photoelectron, and an associated detectable output pulse of electric current from a
photomultiplier tube, than will one with a small classical amplitude. Again, under
Local Realism, different events must be allowed to have different apriori detection
probabilities. .

We thus see that properly testing both quantum mechanics and Local Realism
requires one to allow for a variable detection probability of the detected particles by
the particle detectors. Now, consider the implications of this requirement. Naturally,



474 J.E. Clauser

the set of detected particle events will have a preponderance of events with a higher
a priori detection probability than will the set of undetected-particle events, which,
in turn, will be dominated by events with a lower a priori detection probability.
Correspondingly, the ensemble of detected pairs is clearly not “a faithful example
of all emitted pairs” as GR/AGR assert. Instead, it provides an ensemble that is
significantly biased in favor of events with a high « priori detection probability.

One may view the detection process as a competition for detection among the
particles at the detectors. The GR/AGR assumption implies that the winners (the
detected particles) in the competition for detection were no more capable of
“winning the competition” (being detected) than were the losers (the undetected
particles) in the competition. Viewed in this light, one may ask, is the GR/AGR
assumption truly reasonable. and is the sampling truly “fair”? For comparison, note
that in atmost any sports competition. it would be hard to find a winner who didn’t
truly believe that he/she did not “fairly” win the event because of superior ability
(i.e. a higher a priori probability of winning) rather than by simple luck. Such a
sports competitor would thus strongly disagree with the GR/AGR assumption as
being “fair” and reasonable. Correspondingly, an assumption that all of the “win-
ners” in a competition for being detected by a photomultiplier tube were equally
capable of winning the competition, is equivalent to saying that the detected par-
ticles form a representative subset of all of the emitted particles, as far as their
probability for being detected is concerned.

The GR/AGR assumption is thus a very strong assumption, indeed! It even
seems to violate the fundamental premises underlying both Local Realism and
quantum mechanics. Correspondingly, its application to the testing of not only the
above very reasonable Local Realistic model, but also to the testing of quantum
mechanics itself appears to be highly dubious. Clearly then, the appellation “fair
sampling assumption” must be considered gratuitous.

It should also be noted that the GR/AGR assumption is not equivalent to the very
much weaker CH no-enhancement assumption, as coupled to the CHSH
polarizer-removal protocol. By contrast, the expectation that different particles may
have different a priori detection probabilities is explicit in the CH no-enhancement
assumption. CH simply assume that passage of a photon through a (presumably)
attenuating polarizer does not somehow enhance its a priori detection probability.
Moreover, polarizer absorption has a very strong effect when one is using the
CHSH R-inequality (17), (19) or (20) that results from the CHSH polarizer-removal
protocol and the no-enhancement assumption. In such a case, when the polarizer
absorption is even modestly too large, no inequality violation occurs. It also has a
very strong effect on the viability of the CH counterexample. On the other hand,
photon absorption by a polarizer has no effect at all on the resulting numerical value
obtained from using Eq. (25) in (14), and correspondingly has no effect on whether
or not a violation occurs.’

*In defense of the AGR experiment’s polarizer parameters. their parameters do appear to meet the
CHSH transmission requirements. although they are not required to do so in order to violate the
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As suggested in the introduction, in order to evaluate 2 supplementary
assumption. one may also compare how reasonable it is with how contrived an
associated counterexample is. Given the GR/AGR normalization method’s relative
insensitivity to polarizer absorption. it is not surprising that one can readily build
counterexamples that do not violate the CHSH E-inequality when the
polarizer-removal protocol and no-enhancement assumption is used, but do violate
the CHSH E-inequality when the GR/AGR assumption and protocol are used. (See
Clauser [16].)

Further evidence of just how vulnerable the GR/AGR assumption is to coun-
terexamples was given by Gerhardt et al. [23], who provide both a theoretical and a
convincing experimental demonstration of the ease by which an actual experiment
can be countered, especially in “security related scenarios”. It should be noted that
Gerhardt et al.’s demonstrated violations of a Bell Inequality all use GR/AGR
normalization. Gerhardt et al., however, mistakenly attribute their counterexample’s
existence to a loophole in what they mistakenly refer to as the CHSH inequality,
which instead is really the GR/AGR R-inequality produced by a combining (14)
and (25) above. It should be emphatically noted that Gerhardt et al. do not produce
an experimental (or theoretical) counterexample that employs the CHSH
polarizer-removal protocol. However, they do provide a convincing experimental
demonstration of the ease by which schemes that use GR/AGR normalization can
be countered, especially by malevolent efforts (by “Eve”), as may occur in “security
related scenarios” and quantum cryptography.

GR/AGR normalization and the associated gratuitously named “fair-sampling”
assumption and the GR/AGR-inequality have nonetheless been used by many
experiments, despite the associated proliferation of counterexamples and above
noted shortcomings. (See the section “Some Experimental Results”). One possible
reason for their popularity presumably is their relative ease of experimental
implementation. Beyond allowing the use of strongly absorbing polarizers, no
polarizers are removed under this method, and no additional normalizing data need
be taken. Data collection is thereby expedited. The use of GR/AGR normalization
also avoids a further difficulty associated with ternary-result apparatuses, for which
polarizer removal is not readily possible. For such apparatuses, polarizer removal
necessarily disturbs the collimation geometry of at least one of the channels,
whereupon the polarizer-removal protocol then cannot be used.

Ursin et al. [39] in their test of a Bell’s Inequality go even further than AGR by
using a passive non-polarizing beam-splitter to precede a pair of ternary-result
apparatuses on each side of their experiment. Each composite apparatus then has
five possible results. For each temary-result apparatus that follows the
beam-splitter, Ursin et al. use a modified GR/AGR normalization scheme, where
the denominator only includes coincidences associated with that ternary-result

(Footnote 2 continued)

CHSH E-inequality using Eg. (25). Subsequent experiments that use GR/AGR normalization,
however, do not always meet these requirements.
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apparatus. The normalization for one ternary result apparatus on one side of the
experiment thus ignores coincidences occurring in the other ternary-result apparatus
on the same side of the experiment. An additional facility is gained here from the
use of GR/AGR normalization. Given that all four apparatus orientations needed for
an cvaluation of the GR/AGR R-inequality can be taken in parallel, GR/AGR
normalization then allows greatly expedited data collection and a single experi-
mental run with no required apparatus changes.

It should be noted that there is considerable confusion and misinformation in the
literature on what constitutes the “CHSH inequality”. Many writers mistakenly
appear to believe that GR/AGR normalization is an integral part of the CHSH
inequality, and fail to distinguish the CHSH E-inequality from the CHSH
R-inequalities. For example, Gerhardt et al. [23] say that the CHSH E-inequality's
use necessarily requires the use of the GR/AGR normalization scheme and its
associated R-inequality. Giustina et al. [24] mistakenly claim that

...[separated apparatuses named] Alice and Bob ... each require two detectors for testing a
Clauser-Horne-Shimony-Holt inequality.

The sections “Result Values and Expectation-Value Inequalities
(E-Inequalities)”—“Garuccio and Rapisarda/Aspect Grangier Roger R-Inequalities
for Real Ternary-Result Apparatuses” above all show the falsity of these claims.

Finally, it should also be noted that Christensen et al. [11], mistakenly claim that

...all previous experiments have had to make fair-sampling assumptions that the collected
photons are typical of those emitted (this assumption is demonstrably false (Marshal et al.
[31]) for many of the pioneering experiments using atomic cascades (Freedman and Clauser
[20), and Aspect Dalibard and Roger [4]) and has been intentionally exploited to fake Bell
violations in recent experiments (Gerhardt et al. [23]) ....

Their erroneous statement clearly does not apply to the two cascade photon
experiments they quote, notably to that by Freedman and Clauser [20] and that by
Aspect et al. [4], which both use the CHSH polarizer-removal protocol and CH
no-enhancement assumption, that, in turn, is not demonstrably false.

Some Experimental Results

Table 28.1 lists chronologically some of the experimental tests to date of the var-
ious Bell Inequality predictions. (I apologize to the authors of references omitted
from this table.) The experiment is identified in columns 1 and 2. The entangled
systems and source are given in column 3, along with whether or not locality was
tested. The number of apparatus channels (binary or ternary) is shown in column 4.
The Bell Inequality that was tested is shown in column 5, along with the associated
normalization protocol that was used. Whether an accidental background rate was
subtracted is indicated in column 6, and the magnitude of the observed inequality
violation is shown in column 7.
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All of these experiments except one—that by Holt and Pipkin [27], (see also
Holt [26])—agree with the associated predictions by quantum mechanics. Clauser
(14] repeated the Holt and Pipkin experiment with only a few minor changes and
obtained the opposite results, i.e. results in agreement with quantum mechanics.
The earliest experimental tests by Freedman and Clauser [20], Clauser [14], Fry and
Thompson [21], Aspect, Grangier, and Roger [2], and Aspect, Dalibard, and Roger
[4] all used photons emitted by an atomic cascade, and also used the CHSH
polarizer-removal protocol along with the CH no-enhancement assumption.
GR/AGR normalization via Eq. (25) of the CHSH E-inequality (14) was used in the
experiments by Aspect, Grangier, and Roger [3], Kwiat et al. [29], Weihs et al. [40],
Tittel et al. [38], Ursin et al. [39], and Matsukevich et al. [32].

The experiments by Aspect, Dalibard, and Roger [4], Weihs et al. [40], Tittel
et al. [38] and Ursin et al. [39] all changed the analyzers while the entangled-state
photons were in flight, thereby providing a direct realization of Bohm and Ahar-
onov’s [10] locality-test. The experiment by Tittel et al. [38] is noteworthy in that
the photons use energy-time entanglement, rather than polarization-state
entanglement.

The Fry and Thompson [21] experiment was the first to use tunable laser
excitation of the source atomic cascades, thereby providing a dramatic boost in
count rates over previous experiments. The use of parametric down conversion in a
crystal as a source of entangled-state photons was first offered in 1988 by Shih and
Alley [36], and by Ou and Mandel [34]. It provides a further dramatic boost to
count rates when compared to those emitted by atomic cascade decays. Kwiat et al.
[29] further enhanced count rates via the use of Type II parametric down
conversion.

The experiment by Rowe et al. [31] was the first to violate the “heralded” CHSH
inequality using a heralded source, and thereby to avoid the normalization loophole.
However, in their experiment, light from the two entangled-state Beryllium ions is
commingled indistinguishably in a single detector. By contrast, the basic locality
postulates associated with Bell’s Theorem prototype configurations call instead for
a pair of widely separated independent detectors with no worry about their possible
intercommunication. Unfortunately, the two ions in the Rowe et al. experiment
were seemingly in intimate communication with each other, and even share the
same probe laser light that was used to determine their excitation states. Corre-
spondingly, it is not clear if there were any interfering interference effects (classical,
quantum mechanical, or otherwise) from unresolved light emitted by both, ions.
Interference effects were indeed observed earlier in a similar experiment by Eich-
mann et al. [18]). Rowe et al. do note, however that the ions’ separation was wide
enough that associated Young’s fringes average out. However, this fact does not
rule out some other perhaps non-quantum-mechanical and/or non-classical inter-
fering interference effect. Recall that Bell’s Inequality tesfs seek to determine
whether or not quantum-mechanics is correct, and/or even whether or not any of the
physics generally assumed to govern the formation of interference fringes is correct.
Thus, given the level of generality requjred for such tests, such claims of
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independence are not fully reassuring, and such assumed physics cannot be relied
upon here. '

The experiment by Ansmann et al. [1] entangled a pair of Josephson phase
qubits to violate the heralded CHSH inequality. Since the entangled qubits were
only 3.1 mm separated, intimately coupled, and indistinguishably probed, this
experiment is subject to similar criticisms to those regarding Rowe et al.

More convincing violations of the CHSH inequality using a heralded source with
well separated apparatuses were subsequently reported by Matsukevich et al. in [33]
in 2008, and by Hofmann et al. [25] in 2012. The experiment by Matsukevich et al.
[33] entangled a pair of Yb* remotely trapped ions. The experiment by Hofmann
et al. [25] entangled a pair of widely-separated remotely trapped Rubidium atoms.

Finally, the experiment by Giustina et al. [24] was the first to directly violate the
CH inequality. It was followed very shortly by a similar experiment by Christensen
et al. [11]. Closure of both the normalization loophole and the locality loophole
simultaneously in a single experiment has not yet been done.

Appendix: Local Realism

Local Realism was first explicitly defined by Clauser and Horne (CH) [13] in 1974,
and further clarified in a series of papers by Bell et al. [8] in 19761977 and by
Clauser and Shimony [15] in 1978. CH originally called the theories governed by it,
“Objective Local Theories”. Clauser and Shimony renamed these theories “Local
Realism”. Local Realism is the combination of the philosophy of realism with the
principle of locality. The locality principle is based on special relativity. It asserts
that nature does not allow the propagation of information faster than light to thereby
influence the results of experiments. Without locality, one must contend with
paradoxical causal loops, as are now popular in science fiction thrillers involving
time travel. Upholding locality is effectively a denial of the reality of causal loops.
Equivalently, it is the assertion that history is single valued. Realism is a philo-
sophical view, according to which external reality is assumed to exist and have
definite properties, whether or not they are observed by someone. Bell’s Theorem,
and the experimental predictions made by the associated CHSH and CH Bell’s
Inequalities, along with the associated experimental tests of these predictions, show
that any theory that combines Realism and locality, must be in observed dis-
agreement with these experiments. Consequently, it can now be asserted with
reasonable confidence that either the thesis of Realism or that of locality (or perhaps
even both) must be abandoned.

Another way of describing what we mean by Realism here is to say that it
specifies that nature consists of “objects”, i.e. stuff with “objective reality”. Realism
assumes that objects exist and have inherent properties on their own. It does not
require that these properties fully determine the results of an experiment locally
performed on said object. Instead, in a possibly non-deterministic world, it simply
allows the properties of an object to influence the probabilities of experiments being
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performed on it. There is also nothing in our specification that prohibits an act of
observation or measurement of an object from influencing. perturbing and/or even
destroying said properties of the object.

Realism thus assumes that an object’s properties determine minimally the
probabilities of the results of experiments locally performed on it. Realism, under
the additional constraint of locality, i.e. Local Realism, then assumes that the results
of said experiments do not depend on other actions performed far away by someone
else, especially when those actions are performed outside of the light-cone of the
local experiment.

Properties, as referred to here, are what John Bell called Beables, and what
Einstein et al. [19] called “elements of reality”. The properties of an object con-
stitute a description of the stuff that is “really there” in nature, independently of our
observation of it. When we perform a “measurement” of these properties, we don’t
really need to know what we are actually doing, or what we are really measuring.
What we are assuming is that what is “really there” somehow influences what we
observe, even if said influence is inherently stochastic and/or perhaps irreproducible
from one measurement to the next.

Recall that Einstein et al. [19] attempted to define an object’s properties as
something that one can measure, but they further required that the measurement
result be predictable with certainty. However, given Ben Franklin's observation that
the only predictions that are certain in life are for death and taxes (see the section
“Bell’s 1964 E-Inequality for Idealized Binary Result Apparatuses”), said definition
becomes meaningless, because it describes nothing that can ever occur in reality,
(unless, of course, said properties are equivalent to death and taxes). Our definition
is very much looser and requires no predictions with certainty.

Precisely how does one define an object with such extreme generality? For the
purposes of Local Realism and its tests via Bell’s Theorem, a purely operational
definition of an object suffices. An object (or collection of objects) is stuff with
properties that one can put inside a box, wherein one can then perform measure-
ments inside said box and get results whose values are presumably influenced by
the object’'s properties. What then is a box? A box is defined as a closed
three-dimensional Gaussian surface,? inside of which one can perform said mea-
surements of said properties. For Local Realism, such a box becomes a
four-dimensional Gaussian surface consisting of the backward light cone (extending
to t = —o0) enveloping a three dimensional box, that contains the object(s) being
measured, at the time that they are being measured.

Familiar examples of “classical” objects that can be put into boxes are galaxies,
stars, airplanes, shoes, trapped clouds of atoms, single trapped atoms, electrons,
y-polarized photons, a single bit of information, etc. All of these can be put into a
box and have their properties (e.g. color, mass, charge, etc.) measured. Or can they?
Via Bell’s Theorem experiments, one may ask—are there examples of objects that

*Gauss showed that a “Gaussian surface” is one that divides all of space into two disjoint volumes,
wherein one of thesc volumes may be called the inside, and the other the outside.
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Fig. 284 Worst-case set of required elements for a Bell’s Inequality experiment. This figure was
first presented by the author at the 1976 International “Ettore Majoranna™ Conference in Erice,
Sicily on “Experimental Quantum Mechanics”. The conference was organized by John Bell,
Bemnard d'Espagnat, and Antonino Zichichi. With present-day jargon, the characters labeled
“Signal source and recorder” might now be named Alice and Bob.

cannot be put inside such boxes?* If so, such objects cannot be described by Local
Realism. Furthermore, if there are parts of nature that cannot be described by Local
Realism, then Local Realism must be discarded as a description of all of nature.
Sadly, (for Local Realism advocates®) the individual particles comprising a
quantum-mechanically entangled pair of particles are parts of nature that cannot be
described by Local Realism.

Figure 28.4 shows the worst-case set of required elements for a fully
loophole-free Bell’s Inequality experimental test. Two objects and associated
binary-result apparatuses are each contained in associated boxes that are space-like
separated at the time of the measurement events. The apparatuses measure
quantum-mechanically entangled pairs of particles. The boxes are labeled Z,. and
Yg in the Figure. Each box contains a signal recorder and signal source. Each signal
source generates via the free-will of an observer an appropriate apparatus parametes
setting. The two settings are respectively called a and b. Each box contains a clock
that permits synchronized measurements in the two boxes of the object pairs, that
were emitted in the past and that have propagated into these boxes at subliminal
speed for measurement by the apparatuses.

“The fact that the simplest possible object—a single bit of information—cannot be put into a
“box”, in turn gives rise to the field of quantum information. It also calls into question a claim
often made by general relativists that information is always contained within a given spatial
volume and cannot be destroyed.

*John Bell and I have both confessed to being former advocates of Local Realism.
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An important issue discussed in “An Exchange on Local Beables”, (Bell, Shi-
mony, Horne, and Clauser [8]), is that the apparatus parameters a and b must be
generated independently, for example by the presumed free will of the observers,
and are not to be counted as part of the objective reality being measured.

To derive a Bell Inequality, one then needs to assume the following requirements
for a Local-Realistic theory:

ey

2)

3

@

(3

The probability of obtaining the measured result A in box Z, may depend on
all of the stuff (objects) that are inside the box at the time of the measurement,
including any stuff that may have propagated into the box at a velocity less
than or equal to the speed of light since the beginning of time.

The probability of obtaining the measured result A in box Z, may depend on
the freely chosen apparatus parameter a.

Locality, however, prohibits the probability of obtaining the measured result A
in box ., from depending on the apparatus parameter b that was freely chosen
in the space-like separated box Zg.

Locality, similarly, prohibits the probability of obtaining the measured result
A in box T, from depending on the result B, as measured in box Zg, which, of
course, is allowed to depend on the parameter b.

Similar reciprocal permissions and prohibitions like (1)-(4) govern the
probability of obtaining the measured result B in box Zg.

Surprisingly, that’s all you need to derive the CH (and CHSH) inequality and
thereby to constrain and test Local Realism!
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