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Von Neumann was convinced that the randomness
observed in quantum mechanical systems is inherent in
them and not due to an ignorance of additional random
variables unspecified in the quantum formalism. His
formal ‘“‘proof” of the nonexistence of these hidden
variables,! however, relied on overly restrictive assump-
tions concerning their nature and thus must be con-
sidered unacceptable.?

For historical perspective, Wigner® has recently
described in this Journal the informal argument which
motivated Von Neumann to his conviction. Also
presented is Schrodinger’s objection to his reasoning,
but in a manner which suggests that the objection is
untenable. It is the purpose of the present note to show
that Schrodinger’s objection is valid and that Von
Neumann’s motivating argument is also unacceptable.

Von Neumann’s argument® concerns successive
measurements of different spin components of a spin-3
particle, with the assumption that the result is deter-
mined by a hidden variable (or set of variables).

It may be stated briefly as follows:

1. A single measurement yielding a given sign will
restriet the range of values which the hidden variable (s)
had before the measurement.

2. The restriction will be present after the conclusion
of the measurement, otherwise successive measurements
of the same component would not yield the same result.

3. A subsequent measurement operation of a different
spin component will further restrict this range.

4. A sufficiently large number of these operations will
allow the production of a state for which the spin
components have a definite sign in all directions.

5. The resultant state will violate the predictions of
the quantum theory, and no such violations have been
observed.

Schrodinger objected to Von Neumann’s reasoning.
He suggested that a later measurement, while further
restricting the range of the hidden variable(s) may
restore a range blocked by an earlier measurement. He
thus felt that such a restoration allowed the predictions
of quantum mechanics for a spin-3 particle to be
achieved by a hidden-variable theory.

Von Neumann and Wigner counter with two asser-
tions.* First they claim that such a restoration “. .. pre-
supposed the existence of hidden variables in the
apparatus used for the measurement.” Second they

assert that the existence of these hidden variables still
allows the generation of a state with well-defined spin
components in all directions. Thus they believe that
they have refuted Schrodinger’s objection.

In this note both of these assertions are demonstrated
to be false. A trivial counter example is provided which
accomplishes Schrodinger’s restoration without re-
quiring the existence of hidden variables in the ap-
paratus. The model is capable of duplicating the pre-
dictions of quantum mechanics for an arbitrary series
of spin component measurements of a spin-3 particle.
Obviously, since the existence of hidden variables in
the apparatus is unnecessary for the measurement
operation, the second assertion is likewise untrue, as
the apparatus may choose simply to ignore their
existence.

Consider an ensemble of spin-3 particles which are
polarized along the direction p. The polarization direc-
tion is characteristic of and carried by every member
of this ensemble. Assume that each member of the
ensemble also has a hidden variable which is the unit
vector N, and that \ has initially a uniform probability
distribution over the hemisphere X+ p>0.

Next consider an apparatus which measures the spin
component along the unit vector a. The action of the
apparatus is twofold. First it must be sensitive to the
information conveyed to it by the particle (in this
case N and p), and from this information determine a
binary result A (a, p, N\)===1. Second it must prepare
the state for future measurements, without the use of
any additional random variables intrinsic to the ap-
paratus.

Construction of a model for the first part of this
operation is straightforward, and has already been done
by Bell.>*¢ Define

f=cos!(a'p),

and construct a new vector a’ in the plane of a and p,
defined so that

0'=cos™(a’-p)=3m (1—cosh)

as shown in Fig. 1.
Now specify the result of the measurement to be

A(a, p, \)=sgn(\-a’).
Averaging over \ yields the expectation value
(mp=~+%|o-a|mp=—+1)=1— (20'/m)=cosf
in agreement with the predictions of quantum me-
chanics.

The preparation of the new state for a subsequent
measurement must now be done. We shall consider



Lelters to the Editor

Fra. 1. Hidden-variable phase space: (1) Initial domain
of N; (2) portion of initial domain for which A =41;
(3) final domain of \.

the case of a measurement apparatus that passes only
particles for which the result of the measurement is
A=-+1. All of these have N\ within the intersection
of the two hemispheres N-p>0 and \-a’>0. Define ¢
to be the azimuthal angle of X referenced from p about
the pxa axis (see Fig. 1), and prescribe that the
measurement apparatus rotate X\ about the p x a axis,
keeping the polar angle fixed, to a new azimuthal angle
given by
/ ¢ o’
e T BT

By doing so the initial space is mapped on to the
hemisphere N-a>0. Finally prescribe that the appa-
ratus define p’=a as the new polarization direction
after the measurement operation.

The above deterministic procedure assures that the
distribution of N after the measurement will be uniform
over the hemisphere N+p’>0. Thus the new hidden-
variable distribution will be identical to that before the
measurement, only rotated to the new orientation in
the direction of p’=a.

A second measurement following a similar set of
prescriptions for the direction b will then yield the
expectation value

(my=+%|0-b l my=-+3)=b-p/,

again in agreement with the predictions of quantum
mechanies. Nowhere in our example is there any need
of external (apparatus) hidden variables.

The above trivial example serves to demonstrate
that a hidden-variable theory is capable of yielding
the predictions of quantum mechanics for an arbitrary
series of measurements of different spin components-of a
spin-3 particle. Thus Von Neumann’s informal argu-
ment is also invalid, as well as his formal one.
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A brief comment 1s warranted concerning the rela-
tion between Von Neumann’s informal argument and
Wigner’s discussion of Bell’s theorem. Consider nine
experiments consisting of two successive spin com-
ponent measurements of a single spin-} particle, each
measurement made in one of the three directions
®;, W, and ;. A given experiment will have four
possible outcomes, each corresponding to a different
range of the hidden-variable initial values. The nine
experiments will define 4° essentially different regions.

Wigner? has observed that Bell’s locality postulate,
requiring the result at either measurement to be inde-
pendent of the orientation of the other apparatus,
reduces the number of essentially different regions to 2°.
Von Neumann’s informal argument requires that each
successive partitioning of the hidden-variable domain
(by each successive measurement) commute with other
partitionings. This assumption then reduces the
number of essentially different regions to 23. The
predictions of the quantum theory will be violated in
either case. Bell’s locality postulate achieves a reduction
in the number of regions through an eminently reason-
able assumption. Von Neumann’s assumption on the
other hand, is seen to be unreasonable in light of
Schrodinger’s objection and the above counter example.
Thus Wigner has successfully recast Bell’s theorem in a
form parallel to Von Neumann’s informal argument,
but in a way which remedies the faults of the latter.
Unfortunately the important experimental predictions
of Bell’s theorem are as yet untested.” It is hoped that
this note will put these arguments into their proper
historical perspective.
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