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I. Introduction

More than 20 years ago. Altshuler and Frantz (1973), with great foresight, pro-
posed the possibility of directly observing the de Broglie wave spatial interfer-
ence exhibited by the propagation of whole neutral atoms. More recently, the
idea of building an atom interferometer again was proposed independently by
Dubetskii et al.. (1984). Chebotayev and coworkers (1985), and Clauser (1988,
1989, 1991). Soon thereafter, a wide variety of atom interferometer configura-
tions was demonstrated. Among these are what are commonly called grating in-
terferometers. In a solid grating interferometer, coherent path separation is ac-
complished by passing atom de Broglie waves through carefully tailored
aperture sets (e.g.. slits) in a solid membrane. while in a “light grating” interfer-
ometer a standing-wave phase grating replaces the solid amplitude grating.

This chapter describes a particular form of grating interferometer that we
have developed. called the generalized Talbor—Lau (GTL) interferometer. In
Sections II and III. we first identify a significant weakness (low throughput) of

121 Copyright © 1997 by Academic Press, Inc.
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122 J. F. Clauser and Shifang Li

its progenitor form, separated beam envelope (SBE) interferometry, outline the
operating principles of GTL interferometry, and show how GTL interferometry
remedies this weakness. GTL interferometry is based on a unique form of inter-
ference, intimately associated with Fresnel diffraction, that occurs when Fraun-
hofer diffraction orders overlap. This effect was originally discovered in the op-
tical domain using lenses and gratings and is called the Talbot effect. Its
* diffraction pattern consists of so-called Fourier and Fresnel fringes that, surpris-
ingly, are actually multiply “aliased” near self-images of a grating’s periodic
complex amplitude transmission function. In Sections IV and V, we introduce
the Talbot effect and give a brief historical outline of work contributing to its un-
derstanding. Sections VI and VII summarize its surprising properties. Sections
VIII and IX then introduce the related Lau effect and Talbot interferometer, re-
spectively; and Section X shows how we combine these to create generalized
lens-free Talbot—Lau interferometers, suitable for de Broglie wave interferome-
try. Since we have been unable to find a treatment of Kirchoff scalar diffraction
theory for wave propagation in a medium with inhomogeneous index of refrac-
tion, we derive its basic results in an appendix, applied to de Broglie wave prop-
agation in a spatially varying potential. Section XI then applies this result to a
general discussion of Fresnel diffraction and the Talbot effect for the case of a de
Broglie wave interferometer in the earth’s gravity field. Finally, Sections
XII-XIV discuss atom interferometry experiments that employ the GTL and
Talbot effects.

II. SBE Interferometry

The progenitor form of the GTL solid grating interferometer is the separated
beam envelope (SBE) solid grating interferometer, first proposed by Clauser
(1989) and shown in Fig. 1a. It has been used extensively by Pritchard’s group at
MIT (Keith et al. 1991), (Schmiedmayer et al. 1995), (Chapman et al. 1995a),
(Ekstrom et al. 1995). In it, grating G1 is illuminated by a carefully collimated
atomic beam. Grating G1 coherently separates the input beam into separated
beams via Fraunhofer diffraction. Two of these separated beams are then redi-
rected by a second grating pair, G2A and G2B, to superpose, interfere, and form
a transverse standing wave on the face of a third grating, G3. The standing wave
is then masked by G3 to form a moiré pattern, so that a measurement of the flux
of transmitted atoms allows detection of the interference.

The SBE configuration has quite remarkable image-forming properties, As a
result, the standing wave’s visibility is unaffected by direction and magnitude
variations of the incident k vector (i.e., by coma or chromatic aberration). Unfor-
tunately, the parameter range appropriate to atom interferometry usually does
not allow one to fully exploit these properties, as strong collimation of the inci-
dent atomic beam is required to fully separate the Fraunhofer orders at G2A,
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G2B, and G3. For illumination by a source of atoms with a fixed brightness, B,
the transmitted atomic current (in two-dimensions) scales as

w? Ag\: L L?
CuﬂcntSBEMBf*B(—:n)am (1)

where L_is the collimator length, L, is the interferometer length, W, is the colli-
mator width, @ is the period of the gratings, and A is the atomic de Broglie
wavelength. Unfortunately, for typical available values for A4 and a, Eq. (1) sets
a severe limit to the atomic current transmitted by a SBE interferometer.

III. GTL Interferometry vs. SBE Interferometry
The layout for a GTL interferometer is shown in Fig. 1b. It eliminates the colli-

mator entirely and consists simply of a set of three very wide diffraction gratings
Gs. Gd, and Gm, in sequence. (Rather than identifying these gratings as G1, G2,
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and G3, as we have in previous works, here we use the notation Gs, Gd, and
Gm to indicate their functions as source, diffraction, and mask gratings.) A
GTL interferometer’s transmitted atomic current correspondingly scales as
BWo W, /L, where L, is the interferometer’s total length, and W;, and W are
the Gs and Gm grating widths. Since there is no limitation to the widths W and
W, then, relative to a SBE interferometer, a GTL interferometer provides an
enormously higher throughput atomic current for a given source brightness. For
interferometry with slow atoms, where available source brightness is consider-
ably less than that for fast atoms, the increased throughput (ratio of fringe inten-
sity to illuminating source brightness) can be dramatic. For example, in our first
GTL atom interferometer (Clauser and Li, 1994a), the source brightness was
2500 times weaker than that of MIT’s first SBE interferometer (Keith er al.,
1991). Nonetheless, the peak-to-peak transmitted current variation of the inter-
ference signal was 3000 times stronger. This throughput improvement (by nearly
a factor of 107) can be readily extended by another factor of 10? through the use
of larger gratings and/or gratings with a higher open area fractions.

How does it work? In a GTL interferometer, each point within each slit of Gs
acts as an independent source. For each such source, diffraction grating Gd pro-
duces strongly overlapped Fraunhofer diffraction orders on the face of Gm. How-
ever, in this overlap region, Fresnel diffraction applies and the various orders coher-
ently superpose to create a form of wave interference unique to Fresnel diffraction,
called the Talbor effect. As with SBE interferometry, the interference produces a
standing de Broglie wave on the face of Gm, thereby allowing Gm to act as a mask,
so that the wave interference may be detected by laterally scanning a grating’s posi-
tion. The finite slit widths of Gs and Gm only slightly wash out the transmitted cur-
rent’s associated fringe variation. Thus, while the gratings still physically separate
an atom’s interfering paths within the beam’s envelope, that envelope itself does not
separate. Interfering paths within the envelope consist topologically of many sets of
nested diamonds, starting in a given slit on Gs, passing through the various Gd slits,
and terminating at a point on Gm, where they interfere.

Now, if Gs is suitably periodic, each Gs slit produces essentially the same stand-
ing wave as that produced by other Gs slits. The contributions by all Gs slits then
add to the intensity without deteriorating the fringe visibility. This incoherent addi-
tion of Talbot fringe patterns is called the Lau effect. It is noteworthy that, while the
usual demonstrations of the optical Talbot and Lau effects require the presence of
one or more lenses, our generalization of these effects allows a lens-free system.
Additionally, our GTL configuration retains or even improves on many of the desir-
able features of SBE interferometry. It has higher grating-misalignment tolerance.
Since no collimation is needed, the formation of the standing wave is independent
of the source area; hence, no coma occurs. The price paid for the increased angular
acceptance, however, is increased chromatic aberration. The standing wave formed
at Gm is strongly dependent on illumination wavelength and is not a simple geo-
metric shadow effect but a true interference effect. Depending on illumination
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wavelength, the standing wave period appears at various different harmonics of the
shadow period.! Actually, this chromatic aberration manifests itself as a resonant
chromatic selectivity that proves to be desirable in many instances and can even act
as a de Broglie wave interference filter (see Section XV).

There is another dramatic difference between SBE and GTL interferometry.
For a given A and interferometer length, GTL interferometry allows grating pe-
riods that are at least an order of magnitude larger than those for SBE interfer-
ometry. This grating period difference results from different scaling mechanisms
for the two schemes. Equation (1) shows that, to maintain a minimum through-
put and interferometer size, as the particle mass increases, the SBE grating pe-
riod must scale directly with A,y = hf(mv). It is noteworthy that MIT’s current
SBE experiments use microfabricated gratings with a period (=200 nm) close to
the current lower limit for microfabrication. Thus, SBE interferometry with very
massive particles seems precluded.

On the other hand, with GTL interferometry, the necessary grating period
scales as A2, Figure 2 shows the required Gd grating period, a,, as a function of

IThe discussion by Dubetsky and Berman (1994) of the transmission of atoms by three sequential
gratings employs only the wavelength independent (n = 0. see later) shadow moiré effect, even
though their arrangement affords a wide variety of moiré fringe multiplicities, because of the higher
spatial frequencies introduced by Gs.

100
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FiG. 2. Required Gd grating period. a,. as a function of species atomic mass number for a 3 m
long m = 2 GTL interferometer.
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atomic mass number for a 3 m long interferometer. The two lines on the left are
for the most probable particle velocity in thermal beams at 300 K and 3 K, re-
spectively, while the right side’s limiting line is for freely falling particles gravi-
tationally accelerating in the 3-m interferometer length. The interferometer is as-
sumed here to operate with a, =a, = 2a, at the n =1, m = 2 resonance (see
later), allowing it to demonstrate wave interference unambiguously. It can be
seen that GTL de Broglie wave interferometry with very massive particles such
as very large atomic clusters (i.e., very small rocks) or even small live viruses
may be achievable in the near future.

IV. What Happens When Fraunhofer
Diffraction Orders Overlap?

To appreciate the Talbot effect, it is helpful to understand what happens when
Fraunhofer diffraction orders overlap. Consider the simple two-dimensional
(2D) Fresnel scalar diffraction pattern formed by the Young’s N-slit interferome-
ter depicted in Fig. 3. A point source located at r, = (x,,z,) emits monochromatic
waves (classical or quantum mechanical) with wavelength A. The waves are then
passed by a planar finite-extent periodic complex transmitting object (diffraction
grating). The grating contains N periods, with period a,, and is located at z = z,
with R, =z, — z,, with its axis of symmetry located on the z axis. The general
solution to this problem will provide the complex amplitude for waves imping-

X Ima
ge
Sp%';-',',?a Grating plane

z
Grating point
of symmetry
1 image point
! R Rz of symmetry

F16. 3. Young’s N-slit interferometer arrangement for demonstrating Fresnel scalar diffraction.
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ing on the z = z_ plane, here called the image plane, at a point r, = (x,z, ), with
R,wz — 1. Because of complications arising from quadratic phase factors in
the Fresnel approximation, this general solution with finite N was delayed until
1992, when it was found by Clauser and Reinsch (1992). A summary of impor-
wnt features of the Clauser and Reinsch (1992) solution is given in Sections VI
and VII.

An important distinction between this problem and that for Fraunhofer dif-
fraction is that, in the latter case, plane-wave illumination is assumed, where-
upon on¢ must specify R, = <, and then the resulting pattern’s scale depends
only on the length R,. In marked contrast, the solution to the present Fresnel
problem requires a careful consideration of both lengths R, and R,. It is conve-
nient to reparameterize these in terms of two other parameters, the “reduced
length,” p, defined as

p= E&ﬁ%ﬂ ()
and the geometric shadow magnification, M, defined as
yutit*t BB 3)
R, R, p
It will soon become apparent that the quantity
Mw = dg/p @)

named the Talbot~Rayleigh wavelength by Clauser and Reinsch (1992), is also a
very important parameter in this problem.

Surprising features emerge from the solution of this simple diffraction prob-
lem. These are illustrated by a straightforward numerical evaluation of the Kir-
choff diffraction integral, as is done by Clauser and Reinsch (1992) and
reprinted here in Figs. 4a—4f. For all of this figure the calculation is for a simple
binary grating composed of 12 unit-transmission slits, each of width s, with
agla;=1/3, R,=1, a,= 107%, and A =5 X 10~8—all held constant, thereby
freezing the positions of the Fraunhofer diffraction orders to integral multiples
of 500 X 1078, (If MKS units are assumed, the parameter range spanned will be
found to be appropriate for a typical atom interferometer.) Each successive part
of the figure represents a situation with the source moved progressively closer to
the grating. That is, among these parts, the value of R, varies, starting in Fig. 4a
at R, = =, taking on progressively decreasing values, and yielding correspond-
ingly increasing values for A, and M. Each part displays two graphs. The upper
trace shows the image intensity. and the lower trace shows the associated geo-
metric shadow (A = 0) image of the grating.

Fraunhofer order overlap does not occur (Clauser and Reinsch, 1992, Sec-
tion 1.5) as long as the product NA, is less than the illuminating wave-
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FiG. 4. (a—c) Fresnel diffraction patterns and (d—f) geometric shadow patterns as a function of
x,, for x, = 0 produced by the arrangement of Fig. 3 for various values of R, but all with the same
fixed A and R,. Fraunhofer orders always occur at integer multiples of 500 (see text), Fresnel patterns
are normalized correctly only relative to each other, while shadow patterns are renormalized to 1.
(Figure adapted from Clauser and Reinsch, 1992.)

length, A. For the present calculation, R, was chosen sufficiently large that
NA g is smaller than A for both Figs. 4a and 4b. In turn, these two parts dis-
play well-formed Fraunhofer diffraction orders. Figure 4c corresponds to
NA gz = A, where the order structure now resembles a step function. Figures
4d, 4e, and 4f, all correspond to cases with NA; > A. Figures 4d—4f show
cases with NAp > nA, = A, where n (<N) is an integer (3, 2, and 1, respec-
tively). Each part shows n equally spaced, non sinusoidal “fringes” formed
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per order separation. When this calculation is performed for a grating with
much larger N, the features in Figs. 4d—4f “fringes” become rectangles, with
the same shapes (except for Gibbs phenomena) as those of the associated
geometric shadows.

The presence of these regular “fringes” in Figs. 4d—4f is nor self-evident
from an inspection of the form of the Kirchoff diffraction integral. Moreover, for
intermediate choices for R, such that » is not an integer, the pattern displays
highly irregular features. The regular features seen here are examples of what we
call the generalized (finite-N)) Talbot effect.
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V. Historical Development of the Generalized Talbot Effect

A different manifestation of the surprising periodicities evident in Figs. 4d—-4f
was first noticed experimentally (with light) by Talbot (1836). His apparatus is
shown in Fig. 5a. A beam of monochromatic light is focused to parallel by a lens
and directed through a coarse periodic binary transmission grating (Ronchi rul-
ing) with large N. In analogy with the arrangement of Fig. 3, his arrangement ef-

. fectively sets R, = « and M = 1. In contrast to the variation of Fig. 4, it varies
Ay by varying R,. In addition, a second identical grating is placed in the trans-
mitted light to act as a mask, aligned so that its slits and plane are maintained
parallel to those of the first grating. An observation consists of varying the lateral
position of either grating while monitoring the transmitted light for different
choices for the separation R, between the grating planes.

When the spacing between the gratings R, is O (i.e., when they contact each
other), the lateral position variation yields a simple moiré (triangular) variation
of the transmitted intensity. When the gratings are slightly separated, diffraction
initially blurs the moiré variation. However, at grating spacings, R,, equal to in-
tegral multiples of a characteristic length, the moiré fringes reappear at nearly
100% visibility! The inescapable conclusion is that, with monochromatic light, a

Q@)
PINHOLE
LIGHT
SOURCE
®) Gy G4
| |
|
l ! oeTEGTOR
Exuwr[m ] | OR
| ! -3
'I'|t—— Rl —_|

|
FIG. 5. (a) Talbot’s experiment, (b) Lau’s experiment.
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grating at these spacings can produce a nearly exact image of itself. Further-
more, this self-imaging must intimately involve wave interference, since the
characteristic length is wavelength dependent.

Talbot’s effect remained totally mysterious until Lord Rayleigh (1881) noted
that it is intimately associated with a nonvanishing wavefront curvature and
identified the characteristic length in Talbot’s experiment. The first detailed ex-
planation of this long-standing mystery was first given in 1957 in the landmark
work by Cowley and Moodie (1957). They solved the problem depicted in Fig. 3
for an infinite periodic transmission grating with an arbitrarily shaped (real) sin-
gle-period transmission function. To do so, they used a Fourier series technique.
Self-evident in their resulting formulas is a direct prediction of the self-images
observed by Talbot. They named these images Fourier images.

In their further experimental observations, however, Cowley and Moodie
(1957) found a wide variety of additional, now even more mysterious, shorter-
period periodic images.? The regularities of these images are not self-evident
from an inspection of the Cowley and Moodie (1957) formulas.® They named
these additional mysterious images Fresnel images. Rogers (1963) studied Fres-
nel images numerically, while Hiedemann and Breazeale (1959) presented addi-
tional experimental evidence for them. Winthrop and Worthington (1965, 1966)
provided a (not particularly transparent) method for calculating Fresnel images
by introducing what they called the Fresnel transform but provided no transform
inversion method.

The first correct classification of Fresnel images was given by Gori (1979; see
also, Sudol and Thompson, 1979), working in the domain of binary gratings
with “sufficiently narrow™ slits. Gori showed that the resulting fringe “multiplic-
ities” (relative to the geometric shadow period) are governed by a ratio of two
integers, n and m, in which m controls the fringe multiplicity, while n accounts
for the periodic recurrence of the self-images. He also experimentally demon-
strated this effect. Additionally, Gori presents a qualitative argument to show that
the finite extent of a binary grating limits the allowed multiplicity of the Fresnel
images, while Smimov (1979) gives an order-of-magnitude estimate for their
depth of focus. Patorski (1989, 1993) provides reviews of these and other treat-
ments up to 1992.

The problem depicted in Fig. 3 with both finite and infinite periodic complex
gratings was first given an exact analytic solution by Clauser and Reinsch

2Cowley and Moodie (1957) comment, "In fact it is observed that with gratings of this type a large
number of sharp and frequently complicated out-of-focus patterns are generated.”

*These images may be calculated using the Cowley and Moody (1957) formulas, although Cowley
and Moodie did not appear to recognize this fact. Indeed, they comment (Cowley and Moodie, 1957,
p. 499) that “No obvious relationship exists between the positions of the delta functions and the max-
ima and minima of the real and imaginary parts of the Fourier transform of the Fresnel wave func-
tion.”
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(1992). They provide formulas for calculating both the detailed fringe and enve-
lope shape. More important, in the Clauser and Reinsch (1992) formulas the for-
mation of both Fourier and Fresnel images is self-evident by inspection. Further,
Clauser and Reinsch (1992) show that in the N — o limit the image amplitude of
the Fourier images become exact complex amplitude self-images of the grating,
With finite gratings, “filtered” amplitude self-imaging occurs instead. Clauser
and Reinsch also show that Fresnel images consist of multiply added (aliased)
laterally displaced Fourier self-images. In addition, they give a formula for the
spatial frequency spectrum of the fringe intensity showing finite-width “reso-
nances” at the integer ratios discovered by Gori. In the finite-N domain, the
Clauser and Reinsch (1992) formulas also predict a small spatial frequency shift
of the fringe pattern, new effects associated with a detuning from a resonance,
limitations to the spatial frequency spectrum set by finite grating extent, and a
number theoretical relationship between n and N.

VI. Spatial Properties of the Generalized
Talbot Effect “Image”

The Clauser and Reinsch (1992) analysis shows that the basic requirement for a
“fringe” resonance to occur, or equivalently for a Fourier or Fresnel “image” to
form, is set by Gori’s (1979) condition:

A a m
_m=_.d_=_+
A Ap n € ®)

where m and n are small integers, generalized by Clauser and Reinsch to allow
for a tuning error, €. These integers are what we call here resonance indexes
(quantum numbers). Equation (5) represents a fundamental constraint for the
generalized (finite-V) Talbot effect to occur.

So-called Fourier fringes are formed on the image plane for m = 1 and integer
values of n = 1, The terms fringe and image may be applied only loosely to the
pattern formed on the “image plane,” as the pattern’s shape, in general, is nonsi-
nusoidal and not an image, either, in the usual sense. Indeed, the pattern’s ampli-
tude is a magnified (by M) near replica of the complex grating amplitude trans-
mission function itself. For N <<, the pattern is a filtered (slightly rounded)
amplitude self-image, with the associated filtering given by the Clauser and
Reinsch (1992) Egs. (25)—(27). In the N—x, € = 0 limit, the self-image is an
exact magnified replica. For N < x, the filtered self-image has a finite envelope
(produced via Clauser and Reinsch (1992) Eq. (25)) that is comparable to the
grating’s magnified finite shadow width. For a finite N, approximate self-imaging
persists for a finite range of € # 0, limited by the inequality, |€| < 2/(nN), which
results from a finite remainder in the integer division of Eq. (5).
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It should be noted further that the Clauser and Reinsch (1992) treatment
holds exactly only when n is a factor (rational divisor) of N, the number of slits.
For modestly large N, the Clauser and Reinsch (1992) Egs. (23)—(27) still yield
an approximate but increasingly accurate prediction for the resulting pattern. Re-
cently, Clauser and Dowling (1996) show further that with small slit widths, all
such “fringes” will have the same height if and only if n is a rational divisor of
N. They then use this result to show that the simple Young's N-slit interferometer
depicted in Fig. 3 can be used as an analog computer to find the integer factors
of N.

So-called Fresnel fringes are formed on the image plane for integer values,
m>1 and n= 1. Clauser and Reinsch (1992) generalize the Gori (1979) and
Cowley and Moodie (1957) results to cover general complex gratings, so as to
show that the pattern now consists of m copies (aliases) of the “filtered” m = 1
{Fourier) amplitude self-image per geometric shadow period, with the associated
complex amplitudes all added together. The result is a periodic pattern with pe-
riod Ma,/m. Thus, the resonance index m is referred to as the alias multiplicity.
Because of this addition, the added set of images is no longer a self-image of the
original grating, although each of the added components is such a self-image.
Correspondingly, for m > 1, the summed pattern for a binary grating does not
preserve the original grating’s slit-width to period-width ratio. Also, when the
added components overlap, their added amplitudes interfere, so that the integer
fraction m/n is always reduced to its lowest terms.

The m = 1 case is obviously consistent with the m > 1 case, as the Fourier
image case represents the Fresnel image case, where only one copy, the filtered
self-image itself, is present. Correspondingly, other features of the m = 1 case
discussed earlier, also persist in the m > 1 case. Finally, it should be noted that,
whenever the produc§ m X n is odd (whether or not N is finite), the whole pat-
tern is shifted laterally (relative to the position of the geometric shadow pattern)
by half a shadow (magnified) period.

VII. Wavelength Dependence of the Spatial
Spectrum of the Fringe Intensity

Even with small integer values for the resonance indexes, m and n, many possi-
ble rational fractions occur, with each such fraction providing a “resonance.”
The effect of m > 1 aliasing will be to introduce (or intensify) the mth harmonic
of the basic geometric shadow period into (in) the spatial spectrum of the image
mntensity. Each of the intensity’s various spatial frequency components then con-
tains a regular set of finite-width resonances as a function of the illuminating
wavelength, A. These are shown in Fig. 6. Here we display the A dependence of
the lowest (m-dominated) five Fourier coefficients of the intensity for the limit-
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1992.)
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ing case of a binary grating composed of an infinite number (N = ) of slits,
where the intensity has become exactly periodic. Here, the slits have a width, &,
and period, a,, with s /a, = 1/4. In contrast to the geometric variation employed
in Section IV, here the geometry (and A ) is held fixed and only the wavelength
varies. The Fourier series expansion of the intensity used here has all real coeffi-
cients and should not be confused with Cowley and Moodie’s Fourier expansion
of the image amplitude.

For the:important case of a binary grating (used for Fig. 6), each resonance
has sharply defined boundaries (Clauser and Reinsch 1992, Eqgs. (57) and (59),
and the resonance full widths are given by

ma, AA 2
=>4, =L== (6)
n‘a, A na,

For modestly high s,/a,, the contribution by each multiplicity-m alias is associ-
ated dominantly with the associated mth harmonic content. Cases a, ¢, and e in
the figure show odd valued multiplicities, m = 1, 3, and 5. Correspondingly,
these spectra display negative values for the associated Fourier coefficient when
m X n is odd, as a result of the associated half-period shift of the pattern. Cusps
occur in the m = 4 resonances shown in Fig. 6d, because, when the wavelength
is tuned exactly to a resonance, with a,/a, = 1/4, four quarter-period slit images
add together to produce a flat intensity distribution.

The condition n =0, € =0, holds when the wavelength A exactly vanishes;
that is, the A—0 (n =0, €—0) limit is the geometric shadow limit. Figure 6
shows that for small but finite A, the mth Fourier coefficient of the shadow pat-
tern vanishes abruptly at A/Ap = a,/(ma,), with the coefficient for the funda-
mental (m = 1) component correspondingly persisting to longest wavelength.

For N < =, the image is no longer periodic and each Fourier component ob-
tains a finite spectral width, while the number of resonances for each value of m
is limited by N and results in image filtering. The N < c spatial spectrum is
given by the Clauser and Reinsch (1992) Egs. (57) and (59). We further note that
these formulas hold whether or not n is a factor of N. As a result, when multi-
plied by the Fourier transforms of the Gs and Gm intensity transmissions (suit-
ably adjusted by the “shifting theorem™), they provide the least computationally
intensive method for numerically calculating the exact intensity transmission for
a GTL interferometer as a function of grating displacement.

VIII. The Lau Effect

Lau (1948) performed an experiment similar to that by Talbot, A diagram of his
apparatus is shown in Fig. 5b. In Lau’s experiment, a diffuse extended (spatially
incoherent) monochromatic source illuminates a wide, coarse binary grating.
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The transmitted light then passes through a second identical grating and a lens.
A screen is placed at the focal distance of the lens to observe the magnified pat-
terns thus produced. As before, when the grating spacing, R,, is an integral mul-
tiple of Rayleigh's characteristic length, nearly exact images of the gratings are
formed on the screen.

One may assume negligible transverse coherence in the narrow bandwidth
light illuminating Lau’s first grating, Gs. Each point within a slit of Gs then acts
as an isolated, independent point source illuminating grating Gd, spaced from
Gs by R,. Each such source point generates a Talbot effect image on the screen.
Lau has effectively placed the image at R, = = by the use of a lens. Incoherently
averaging the intensity produced by all such points within a given source grating
slit yields the intensity produced by one such slit. Now, since the resulting pat-
tern is periodic, a second Gs slit spaced at a distance a, = a , from the first slit
will produce the same pattern, simply shifted by one period. Hence, all source
slits produce essentially the same periodic image (except for finite envelope-
width effects) that is observed on the screen for one slit, and the intensities from
all Gs slits add.

IX. The Talbot Interferometer

The next step in understanding the operation of a GTL interferometer is to dis-
cuss what is commonly referred to as the Talbot interferometer, first demon-
strated by Lohmann and Silva (1971). Its configuration is essentially identical to
that of Fig. 5a, with an imaging screen acting as the detector (following the sec-
ond grating). The spacing R, is set so that the m = 1, n = ] resonance obtains for
Gd. In a variant configuration by Yokozeki and Suzuki (1971), a laser replaces
the point source and lens. When a refractive object is inserted between the two
gratings, a shadow image of the object forms on the screen. Image features de-
pend on the object’s refractive index gradient distribution.

X. Generalized Lens-Free Talbot-Lau Interferometers

Given an understanding of the Lau effect. one can see that another interferometer.
similar to the Talbot interferometer. may be created by combining the Talbot and
Lau effects. This may be done by simply adding a “masking™ grating, Gm, to the
image plane in Lau’s experiment. Equivalently. one can replace Talbot's point
source with a diffuse source, followed by a “source™ grating Gs. However, neither
combination is particularly useful for atom interferometry. since both involve the
use of a'lens. Indeed, Patorski reviews a variety of experiments using similar
arrangements, all involving the inclusion of one or more lenses. Unfortunately. in-
terferometric quality lenses do not. as yet. exist for atom de Broglie waves.
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We can see, however, that lenses are readily eliminated from a Talbot—Lau
interferometer by suitable choices for the grating periods or for the resonance in-
dexes associated with diffraction by Gd. Thus, a lens-free generalized Talbot—
Lau interferometer (Reinsch and Clauser, 1991) suitable for atom de Broglie
wave interferometry may be created by simply placing three gratings in se-
quence and employing spatially incoherent de Broglie wave illumination, as we
have done in Fig. 1b.

Consider the simple symmetric (R, = R,) example shown in Fig. 1b. If the
wavelength, grating spacing, and Gd period, a,, are chosen so that the m = 1,

= | resonance obtains, then the fringe period formed on Gm by a point source
on the Gs plane will be Ma,/m = 2a,. If the Gs and Gm periods are chosen to be
a,=a, = 2a, then the Lau effect will occur and the resulting self-image
“fringes” formed on the Gm plane may be detected by moiré techniques, as be-
fore, by monitoring the transmission of Gm and its variation under a lateral
translation of any one of the three gratings.

It should be noted that a wide variety of choices is possible for grating peri-
odicities, resonance indexes, and associated grating spacings. To obtain highest
throughput, gratings with periods a, = Ma,/(mM — m) and a,, = Ma,/m are ap-
propriate. Clauser and Reinsch (1992) experimentally demonstrate operation of
a lens-free asymmetric GTL interferometer for light operating at the m =3,
n = 1 resonance that employs illumination by a spatially incoherent sodium dis-
charge lamp. Another useful variant is with R, =R,, m=2,and a,=a,=aq,.
This latter case, however, will not allow one experimentally to distinguish m = 1
and m = 2 resonances from each other.

A gravity gradiometer (Clauser, 1988, 1989, 1991), (Marzlin and Audrecht,
1995) may be built using a GTL interferometer composed of four gratings,
shown in Figs. 7a and 7c. Here, Gs and Gd separated by R, (T) create a periodic
“real” image at an image plane a distance R, (T,) behind Gd. Rather than placing
a masking Gm grating at this plane. this image acts as a periodic source for a
second Gd' diffraction grating placed R = R, behind Gd. A final masking Gm
grating placed R; = R, behind Gd’ then detects the fringes.

Finally, it should be noted that, since self-images are amplitude images, one
may use a phase grating for Gd. Indeed, Janike and Wilkens (1994) use a stand-
ing wave laser beam to act as an atom de Broglie wave phase grating in an
arrangement useful for high-resolution lithography. One may also consider the
possibility of observing a “temporal” Talbot effect, Where laser phase gratings
are sequentially pulsed so that the atomic velocities multiplied by the time inter-
vals yield appropriate values for R, and R, (see Section XI). Analyzed in this re-
gard. however, it will be seen that the experiment by Mossberg et al. (1979) op-
erates in the n = 0 geometric shadow regime.*

*See endnote. p. 150.
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FIG. 7. (a) Gravity gradiometer configuration using GTL interferometry and four gratings. (b)
Vertical GTL interferometer in a gravitational field. (c) Gravity gradiometer configuration of (a) with
R, and R, having equal fall times, also showing typical (patented) figure 8 interfering paths within
the beam's envelope,

XI. Fresnel Diffraction and the Talbot Effect
with a Spatially Varying Potential

So far, we have discussed Fresnel diffraction and the Talbot effect for de Broglie
wave propagation under a constant potential, V(r) = V. In such case we have
k=|k(r)| = 2m[E — V]"?/#, = 2m/A 5 and the path integral (see the appendix)
is just simply k|r — r’|. However, we noted in Section IX that a detectable fringe
shift will result if, at any place between the gratings of a Talbot interferometer, a
change in the intervening index of refraction occurs. For de Broglie waves the
index of refraction is given by n(r) = [1 — V(r)/E]"? and will be spatially vary-
ing in the presence of nonvanishing Coriolis, gravitational, electric, and/or mag-
netic fields. The appendix presents a derivation of the Kirchoff diffraction inte-
gral for de Broglie wave diffraction in the presence of a slowly spatially varying
(with respect to A ;) potential V(r). Here, we apply the results of this appendix
to demonstrate how the Talbot effect still occurs and how the associated fringe
shifts may be evaluated for a few simple cases.

When V(r) << E is not constant, a simple approximation may be used to
evaluate the path integrals (Anadan, 1984), (Greenberger and Overhauser,
1979). The approximation is to neglect the path curvature, which is now
small, and perform the path integration along a straight-line path, which is not
far from the desired classical path I',. Moreover, if the variation of V(r) is



GENERALIZED TALBOT-LAU INTERFEROMETRY 139

uniform through the propagation volume, as is the case when V(r) is due to
gravity, it will contribute a common error to all paths that will cancel, The use
of exactly horizontal or vertical gratings significantly improves the accuracy
of this approximation. For the case of fast particles in a gravitational field,
when the trajectory is roughly horizontal, this approximation yields a simple
classical fall of the envelope and the fringes at the image plane for both SBE
and GTL interferometers.*

With very slow atoms (and long A,,). unless one somehow eliminates the pull
of the carth’s gravity. then the potential energy, V(r) = mgzé., is not small with
respect to E and the associated classical path curvature may not be neglected,
even in an interferometer with exactly horizontal gratings. Consider a particle

falling from a point r, = (x=0, 2= 0) to a point r,=(x=x, z=—L). The
path integral, via Eq..(A6), is then given by
12
&(r,r,) = 3‘; 20+ L + = (4L€+ 4»6"-1—)”2]
X {[L + 26+ (L2 +3)'” = [L + 20~ (L2 +)7)'7) ©
where £ = E/(mg).

We now apply Eq. (7) to a vertical axis interferometer with horizontal grat-
ings operating in the earth's gravity field. as shown in Fig. 7b. We calculate the
phase difference between two representative paths, a straight down reference
path and one passing through a Gd slit a distance x, off the axis. To apply the
Fresnel approximation. we express Eq. (7) as a power series in x,, keepmg terms
only to the second order. Terms of higher order are negligible for x3 <<4¢R,.
The phase difference is then given by

® =, myg(l 1) @)
27 2n \T, T,

Here, T, and T, are the fall times for a classical particle through the associated

d:stances R, and R,. A comparison of the form of Eq. (8) with that for the V=0

case (Clauser and Reinsch 1992, Eq. (4)). A¢d/2m) = rd / (2Ap), provides the de-

finition

h TT,
AgpP)ey = ®)

mT, + T
which. in turn. may be used in place of Eq. (2) to allow a direct application of
the Clauser and Reinsch (1992) formulas for GTL interferometry in terms of the
classical fall times in place of axial vertical fall distances. Equation (7) may be
used in similar fashion to evaluate higher order phase shifts, aberrations, the ef-

*Note. however. that in a (two-loop) gravity gradiometer the envelope falls but the fringes do not.
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fects of grating period foreshortening associated with a path’s oblique incidence
on a grating, and so forth, for an arbitrarily inclined interferometer in the earth’s
gravity field.

XII, GTL Atom Interferometry Experiments with K and Li,

The first working GTL al.om interferometer was demonstrated by us at the Uni-
versity of California— Berkeley (UCB) (Clauser and Li, 1994a). The experi-
mental arrangement is shown in Fig. 8. The atomic beam source actually gener-
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Fic. 8. Generalized Talbot—Lau atom interferometer used by Clauser and Li (1994a). Grating ro-
tational alignment uses a HeNe laser that forms a SBE optical interferometer using all three atom
gratings and a fourth additional identical grating, displaced to one side of Gd. (Figure adapted from
Clauser and Li, 1994a.)
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ates two copropagating atomic beams: a dc hot thermal beam and an ac-modu-
lated cold slow potassium beam. Thermal potassium atoms effuse from an oven,
pass through a wide collimating slit (needed for velocity selection only), and
then through an atom de Broglie wave GTL interferometer to a hot wire (surface
ionization) detector. The oven slit is offset from the interferometer axis so that
only one wing of the collimated thermal beam (produced by scattering near the
oven slit) passes through the interferometer to the detector. Cold slow atoms are
velocity selected by using laser light to deflect them out of the offset parent ther-
mal beam onto the interferometer axis (Li and Clauser, 1994). The laser beam
crosses the atomic beam immediately below the collimating slit at 20° from co-
moving parallel. The parallel component of the laser’s propagation vector pro-
vides Doppler velocity selection of atoms from the low-velocity portion of the
parent beam’s thermal distribution, while the perpendicular component provides
momentumn transfer for deflection. The small deflection angle (=.5 mrad.) re-
quires scattering of only about seven photons, so that perpendicular heating of
the slow atoms is minimal and a source brightness of about 4 X 10'* atoms cm >
sr~! sec™! is achieved for 182 m/sec atoms.

The ac modulation of the deflecting laser allows the transmission of the two
different beam components to be measured independently. The average dc hot
wire signal represents that due to the thermal velocity component of the atomic
current. The weak ac component of the current is synchronously detected by an
“up/down boxcar integrator.” The maximum transmitted ac current is roughly
4 X 10° atoms per sec at 182 m/sec. The dc current is about 130 times stronger,
and the signal to noise ratio of the AC signal is limited by the shot noise of the
much larger copropagating dc current.

The interferometer consists of a sequence of three microfabricated rectangular
vacuum-slit transmission gratings. The gratings are microfabricated from 1 um-
thick silicon nitride membranes supported by silicon frames, with parallel slits
etched through the membranes. Grating fabrication was done by us at UCB’s
Microfabrication Lab via conventional optical lithography and etching techniques.
The interferometer’s parameters are R, = R, =46.2 cm, a, = a, = 16.2 um, a,=
8.1 um, N, =22, N,= 111, and N,, = 76 slits. All gratings are 8.5 mm long with
s/a = 1/8. Fringes are sensed by measuring the interferometer’s transmission as a
function of Gd position. The fringe pattern and transmitted current contain various
spatial harmonics of the geometric shadow period. with each harmonic resonant in
the interferometer at a different atomic velocity (differént A ). The hot beam pro-
duces a pattern that appears as diffraction-limited shadow moiré fringes, shown in
Fig. 9a. Its high spatial frequency Talbot fringe structure is washed out by the ther-
mal velocity average. (In Section XIV, we show how components of this structure
may be recovered and observed.) The ac-modulated slow beam produces high-
visibility interference fringes at the Sth and 6th spatial harmonics of the shadow
moiré, via excitation of the (m.n) = (5.1), and (6.1) interferometer resonances, evi-
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FiG. 9. (a) Diffraction-limited shadow moiré fringes formed with thermal potassium beam illu-
mination of the interferometer of Fig. 8. (b) High-visibility de Broglie wave interference fringes at
the 5'th and 6'th spatial harmonics of the shadow period, formed with illumination by a slow cold
potassium beam. (Figure adapted from Clauser and Li. 1994a.)

dent in the ac signal, shown in Fig. 9b, and in agreement with numerical simula-
tions.

In these experiments, we also observed that a strong Sagnac phase shift of the
PA dc (fast atom) fringe signal was immediately (7, < 1 mS) evident whenever
the chamber was touched, even lightly. Using the straight-line path integral ap-
proximation of Section XI, we find that this translates to a sensitivity to rotations
of , =7 X 10~ rad/sec, as the rotation rate needed to provide a 27 phase
shift. For the ac (slow atom) sixth harmonic fringes. rotations at sz =~4x10™*



GENERALIZED TALBOT-LAU INTERFEROMETRY 143

rad/sec (at a count rate of almost 10® atoms/sec) caused similar fringe shifts. For
comparison purposes, the atom interferometry experiment by Riehle er al.
(1991) yielded {1, = 0.4, the neutron interferometer Sagnac effect measurement
by Wemer et al. (1979) yielded 2, = 3 % 10~ and the electron interferometer
Sagnac effect measurement by Hasselbach and Nicklaus (1993) yielded
Q,, =~ 46, Subsequently, we have used the same apparatus (after some modifica-
tion) to obscrve fringes from thermal Li, molecules. Inserting electric field gra-
dient electrodes, we have used our apparatus to determine the electric polariz-
ability of Li,.

XIII. Talbot Interferometer Using Na
An example of a de Broglie wave Talbot interferometer (Section IX) was

demonstrated using sodium by Chapman e al. (1995b). A diagram of their appa-
ratus is shown in Fig. 10a. There is no Gs, since this is not a GTL configuration.
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FiG. 10 (a) Talbot interferometer apparatus used by Chapman et al. (1995b) (b) Observed fringe
“visibility" as a function of R,. showing the n =1, m=1 and n =2, m = | resonances. (Figures
adapted from Chapman et al.. 1995b.)
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Instead, they produce a quasi-parallel atomic beam by configuring R, >R, . The
resulting low throughput is compensated for, using brute force, by employing a
very bright fast-atom source. Their experiment was performed as a near parallel
1o Talbot’s experiment. By varying the spacing R, between the gratings, they ob-
served both the n =1, m = 1 and n = 2, m = 1 resonances, Figure 10b shows the
observed fringe “visibility” as a function of R,. The visibility of higher n self-
‘images is reduced by a combination of finite collimator size, luck of cxact beam
parallelism (equivalently, M # 1), and finite atomic velocity spread.

XIV. “Heisenberg Microscope” Decoherence
GTL Atom Interferometry

Walls er al. (1991; see also Tan and Walls, 1993) and, independently, Sleator et
al. (1992) have analyzed a problem, analogous to that of the “Heisenberg micro-
scope” gedanken experiment for freely propagating atoms with well-defined mo-
menta that form de Broglie wave fringes in a Young's two-slit interferometer.
They consider a situation where both slits are simultaneously illuminated by a
single photon that is resonant with an atomic transition and calculate the result-
ing atomic fringe visibility as a function of slit separation. They predict that,
when the slits are separated sufficiently that a Heisenberg microscope viewing
the fluorescent reemission of the photon could image this light to determine
which slit an atom passes, the atomic fringe visibility will vanish. But, when the
slit spacing is comparable to the optical wavelength, such a determination by the
microscope exceeds its resolving power, and then the atomic interference pattern
will persist.

While performing the GTL atom interferometry experiment of Section XIII,
we recognized that our interferometer could be modified simply to allow testing
this prediction in the limit of large slit spacing. While a similar effect had been
earlier observed by Sterr et al. (1992) with high-intensity scattered light, we
were the first to demonstrate (Clauser er al. , 1993a—c; Clauser and Li, 1994b)
that the scattering of a single low energy photon by an atom passing through an
N-slit interferometer with wide slit spacing, a, > Apporons Will totally destroy the
de Broglie wave interference fringes formed.

To do this, we reconfigured our experiment to that of Fig. 11. For this experi-
ment, we passed only a thermal velocity distribution of potassium atoms through
the GTL atom interferometer. It produced a thermal velocity average of different
fringe Fourier components, with each component resonant in the interferometer
at a different atomic velocity. As noted previously, the velocity distribution aver-
ages and hides the high-frequency fringe components. To recover a specific com-
ponent, we pass very weak ac-modulated laser light diagonally through the inter-
ferometer near the middle grating to scatter off of the transiting atoms. Since
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Fic. 11. “Heisenberg microscope™ decoherence GTL atom interferometry apparatus used by
Clauser and Li (1994b). (Figure adapted from Clauser and Li, 1994b.)

imaging of the scattered fluorescent light could be used to determine which slit
an atom passes, the scattering removes the contribution to the averaged pattern
by atoms whose velocity corresponds to the laser's Doppler-shifted wavelength.
That velocity component (only) thus is ac modulated and detected. Its ac modu-
lation then reveals the destroyed high spatial-frequency fringe contribution.
Thus, to observe the destroyed fringe pattern, we record the ac transmitted atom
current as a function of Gd position, while holding the laser tuning fixed. The re-
sults are shown in Fig. 12.

When the laser is on, photons are scattered by the atoms. Given our GTL
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Grating Position
FiG. 12. (a) The dc signal (thermal beam transmission) recorded for the arrangement of Fig. 11
as a function of Gd lateral position. (b) The associated ac signal for constant laser tuning displaying
the interference fringe pattern destroyed by the scattering of a single photon, (Figure adapted from
Clauser and Li, 1994b.)

geometry and sufficient momentum transfer from the photon, atoms may be
scattered into open slits and thence transmitted. We model this process assuming
a classical atomic trajectory and use the pointwise momentum-transfer photon
scattering model developed by Einstein in his discussion of the kinematics re-
quired for thermal equilibrium to be produced when a gas is irradiated by ther-
mal light. The potassium hyperfine structure effectively limits the number of
photons scattered by an atom to about one via the high probability that following
a scattering the atom will optically be pumped and thereafter be transparent to
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the laser radiation. To further assure less than one photon’s scattering per atom
in an atom's flight time through the laser beam, and to provide a narrow cffective
laser bandwidth, the laser is attenuated heavily.

To test this model, we measure the velocity (laser-tuning) dependence of the
ac signal while holding the grating positions fixed. While the hyperfine structure
is not resolved in the fluorescence spectrum. by contrast, the ac transmission
spectrum displays two well-resolved peaks whose spacing corresponds to the
hyperfine structure. In effect, we thus have used the chromatic selectivity of a
GTL interferometer to create here what amounts to an atom interference filter.
The filter's velocity selectivity has allowed us to narrow the effective transmitted
velocity range, to provide an improvement in the optical fluorescence spectral
resolution.

Subsequently, Pfau er al. (1994) have further improved on our experiment by
measuring the coherence loss as a function of slit spacing. Pfau's group is now
pursuing a third generation experiment in which the scattered photon is detected
in coincidence with the scattered atom.

XV. Conclusions and Future Applications

The fringe deflection at the final masking grating produced by a weak external
field, such as that resulting from gravitational and Coriolis forces, is the classical
deflection in either a SBE or GTL interferometer. Hence, for comparable mask-
ing of grating slit widths and comparable atomic velocities, the fringe shifts due
to these forces (or any other weak deflecting force) are identical. However, for
comparable source brightness, the transmitted atomic current in a GTL interfer-
ometer is many orders of magnitude higher than that of a SBE interferometer. In
addition, the brightness afforded by most sources for very slow atoms generally
is too weak to be used in SBE interferometers. Hence, GTL interferometry of-
fers much higher sensitivity than SBE interferometry for the measurement of
weak deflecting forces, in view of its potential for dramatically superior signal to
noise ratio.

The study of GTL interferometry also is a source of new physics. Figure 2
shows that GTL interferometry may be applied to species with very large mass
and thereby can probe the fundamental limits for a possible breakdown of de
Broglie wave interference as the classical domain is approached. As the study of
the quantum mechanics of large atoms and molecules advanced beyond consid-
erations of the hydrogen atom, it yielded new surprises and new quantum num-
bers. In a direct parallel. extending one’s consideration of Young’s two-slit con-
figuration to that of the N-slit configuration has revealed new surprises in
diffraction theory, including new quantum numbers (m and n), a rich new spec-
troscopy (see Fig. 6), a surprising relationship between number theory and dif-
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fraction theory, and possible new insights for quantum computing (Clauser and
Dowling, 1996).

Presently in progress in our laboratory is an experiment to observe de Broglie
wave interference with freely falling very cold Rb atoms. Using now standard tech-
niques to provide a bright source, the atoms are dropped from a MOT (see Shimizu
et al., 1992) and focused with a magnetic lens (see Comell ez al., 1991) through a
GTL interferometer. This configuration is particularly interesting for study, since
the atoms experience a form of gravitational pseudo-cooling during their fall (some-
times referred to as dynamic velocity compression), so that the velocity distribution
incident on Gd (as viewed in the lab frame) is much narrower than that of the MOT.

Appendix: Kirchoff Diffraction with Spatially Varying V(r)

Unlike a light-pulse interferometer, a grating interferometer is an inherently sta-
tic device. Thus the wave function, y(r), of a particle with energy E propagating
through such a device in the presence of a static potential V(r) must satisfy the
time-independent Schrodinger equation, which may be written in the form of the
Helmholtz equation as

[V2 + KA)J(r) = 0 (AD)

with k,(r) = 2m[E — V(r))/#2. Since the Helmholtz equation is the time-inde-
pendent parent equation for propagation of many other types of waves, our dis-
cussion applies to these cases as well. In turn, the Green’s function, G(r; r’) for
this problem satisfies the equation

[V2+ E(MIG(r; r") =d(r — r'). (A2)
The diffraction problem to be solved involves the boundary conditions of Fig.

3. Consider a trial Green’s function:

eid(r:r’}

G(l’,l") TR | (A3)
|r—r’]|

Substituting Eq. (A3) into Eq. (A2), we find that the phase function, ¢(r; '),
satisfies the equation

2 -
{kz(r)—[vrqb(r; r’}] } -+ i[vs - H . V,j|d)(r; r)=0. (A4)
For a slow spatial variation of V(r) (with respect to A ) such that the WKB ap-
proximation holds, that is, such that [V,¢[* >>|V3¢| holds, and outside of the
“very near-field” region such that [V¢| >> 1/|r — r’| holds, then Eq. (A4) becomes

V. o(r; ©)|? = k¥r) = 2m{E — V(r)/A2. (A5)
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Without a loss of generality, we take ¢(r: r) = 0. Then, given the identity
@(ry; r,) = [ VéXr; r,)-dr for any integration path, we see that [¢(r,; r,)| must
be no greater than the extremum among possible integration paths, I', of the
path-dependent line integral [ .’r;:r [Vax(r: r)| di(r). This extremum occurs for
the path that is always locally tangent to V ¢Xr; r,); that is, for the path for
which [Ve(r: r))-dr| = |[Vé(r: r))| di(r) holds throughout, However, a classical
particle with energy E traveling from r, to r, under the influence of V(r) will
have its momentum p,(r) = mv,(r) always tangent to its trajectory, I o With
lpo(0)* = 2m (E — V(r)]. The path T, may be found by solving Hamilton's
equations for the classical motion. By Eq. (AS), we then have |p (r)]> = #?
[V.é(r: r')|% and from Maupertuis's principle of least action, we know that the
path I, is the desired extremum integration path. Therefore, the solution to Eq.
(A5) is given by the path integral

r. r.
figryir) = ij_ p,y(r)-dr = iJ“ V2m[E — V()] di(r). (A6)
r:l, il

Given our trial Green'’s function of Eqs. (A3) and (A6), we may write the am-

plitude transmitted by the grating of Fig. 3 with amplitude transmission (r,) at

any point r, on the - = -, plane, in response to a point source at r,, as
idlr T )
r) =——— Hr¥(r). A7
y(r,) v, —r) (r ¥(r,) (A7)

For the solution to the right of the grating for the problem of Fig. 3, we con-
struct a Green's function satisfying the Rayleigh—Sommerfeld boundary condi-
tions, using instead [8(r — r’) + 8(r — r")]/2 for the right-hand side of Eq. (A2),
where we have defined r”"=r’' — 2 (z — 2 )., and take the limitas r’ —r". It is
given by

id{rr’y Pl ey

G(rr') = (A8)

e —r| " r—r7
Via Green’s theorem, the amplitude at any point r,, on the = = =, image plane is
given by the integral over the = = =, surface § as

i{&ir r )~ dirzr, 1]

- dl |rd - rm

U(r,) = i(r ) X J; [re |é_. s P, (r He(r ) da(r ) (A9)
5 .
where da(r,) is a differential area on S.

We note a formal resemblance between the Green'’s function G(r,; r,) and the
Feynmann propagator K(r, t,: r,,,). The latter is used by Storey and Cohen-Tan-
noudji (1994) in their application of Feynmann path-integral methods to atom
interferometers. While their method is more appropriate for time-dependent
problems (such as light-pulse interferometers), ours is more suitable for time-in-
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dependent problems. Both methods evaluate the final amplitude by an integra-
tion over all possible classical path contributions to the final amplitude. Both
methods evaluate the phase shift along a “classical” path from r, to r, and inte-
grate over a variation of an endpoint for this classical motion, thereby specifying
a family of integration paths. However, the classical physics assumed for the mo-
tions along these paths is quite different, as are the paths within each family. In
our family (that for the Kirchoff diffraction integral), the classical paths I, are
all for a particle with a constant energy E but with a varying propagation time;
while in a Feynmann path integral family, they are all for a particle with a fixed
propagation time z, — f, but with a varying total energy E.
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Endnote

After completion of this manuscript, an example of the “temporal™ Talbot effect predicted herein was
experimentally demonstrated by Weitz et al. (1996). Effectively, in their experiment 5-slit multipath
de Broglie wave interference is created in momentum space via a sum of quadratic phase factors,
wherein the interfering paths form nested diamonds. The “slits” are magnetic sublevels of a cesium
atom excited by a sequence of three “walking-wave™ light pulses, equally spaced in time. Nonsinu-
soidal interference fringes are observed in the fluorescence as a function of optical phase-shift.
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