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JOHN F. CLAUSER

DE BROGLIE-WAVE INTERFERENCE OF SMALL ROCKS
AND LIVE VIRUSES

INTRODUCTORY ABSTRACT

This paper discusses a new form of interferometry that we have developed and call
Generalized Talbot-Lau (GTL) interferometry. The Talbot effect is a wave-
interference effect that occurs near a diffraction grating in the region where
Fraunhofer diffraction orders overlap and interfere. It is a pure Frasnel diffraction
effect that creates a diffraction pattern consisting of a near phase and amplitude
self-image of the grating, or multiply overlapped (aliased) copies thereof. Our
generalization of this effect provides an analytic formulation of its self-imaging
properties in the domain of finite (N-period) gratings. We have further integrated
the generalized Talbot effect with the related Lau effect to allow construction of
lens-free GTL interferometers. These consist simply of a sequence of three (or
more) very wide transmission gratings, illuminated by uncollimated spatially
incoherent waves. When used with vacuum slit gratings, such an arrangement may
be applied to (non-penetrating) de Broglie waves. We have thus used this
arrangement to demonstrate de Broglie wave interference for whole atoms. The
unique scaling of the required grating periods with wavelength will allow, in the
near future, heretofore impossible demonstrations of de Broglie wave interference,
with very high mass species, such as very small rocks and even live viruses. Such
an experiment, in turn, can provide severe constraints for various theories recently
proposed to explain wave-function collapse.

‘““PROFESSOR, I SEE DOTS BEFORE MY EYES!"’

Young’s two-slit experiment has a special role in quantum mechanics, and
embodies some of its mystery. Schrodinger’s equation predicts that when a beam
of de Broglie waves is projected through two slits onto a screen, the continuous
complex valued waves described by this equation will form a continuous
diffraction pattern on the screen, as will waves described by any linear classical
wave equation. However, when such an experiment is performed with de Broglie
waves, instead of a continuous pattern, a quasi-random set of dots is formed on the
screen. Curiously, the density of dots is proportional to the predicted intensity of
the waves. None the less, an experiment finds a bunch of dots and not a continuous
pattern!

An honest but naive undergraduate performing such an experiment wonders why
the experimental observation of dots doesn’t agree with Schridinger’s prediction
for a continuous pattern. An honest professor grading the lab report would
mark the student wrong if he/she claimed agreement with Schrédinger’s prediction.
The rest of us, however, being raised in an era of national Constitutions that
don’t exactly agree with associated legislation, accept the Supreme Court’s
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2 JOHN F. CLAUSER

“‘interpretation’’ that the emperor really does have some clothes on, and mark the
student correct when he/she proclaims perfect agreement, and incorrect if he/she
does not. Nevertheless some of us (secretly or not) still find it mysterious that there
is an evident discrepancy between Schrédinger’s wave-theory and observation.

David Bohm (1952) produced a tentative theory that had both waves and
propagating dots. It explains this quasi-random distribution with great clarity. The
dots simply ‘‘surf”’ on the waves and thereby are guided to the screen with the
observed distribution. This mechanism is similar to one in plasma physics (a field
to which Bohm also made significant contributions) called Landau damping.
Following Bohm, however, John Bell, Abner Shimony and friends showed that
Bohm’s theory, indeed any theory that explains the dots as the impacts of
trajectories of localized particles, raises very serious problems concerning our
concept of space-time (see Clauser and Shimony, 1978). ‘“You mean it gets worse
still?’’, cries the bewildered student! One is now led away from the problem of
understanding the dots to the far more perplexing problem of understanding non-
local quantum-entanglement. None the less, Richard Feynman still claimed that the
two-slit problem contains ‘‘the only mystery’’! ‘“You mean, if we explain the dots,
we now have complete clarity?”’ I wish it were as simple as Mr. Feynman contends
Bohm’s theory does, and we don’t.

Most introductory textbooks on quantum mechanics provide a discussion of the
orders of magnitude involved for quantum interference and argue that these are so
large or so small that quantum interference effects do not appear for macroscopic
objects. Hence, it is argued, quantum mechanics has no impact on ordinary,
everyday experience. Hence, we should expect dots! ‘‘Huh? Ordinary, everyday
waves, such as those on a pond’s surface, don’t produce dots!”” Much of the force
of these discussions intimidates the student, so that when it comes time to discuss
the more paradoxical (or otherwise hard to grasp) provisions of quantum
mechanics, he/she blindly accepts these provisions, assuming their explanation
to be buried in this large order-of-magnitude dissimilarity. Basically, the ‘‘order-of-
magnitude intimidation’” method of argument points out that at very short
wavelengths, Schrodinger-wave theory (indeed any wave theory) reduces to having
the slits produce geometric shadow intensity patterns. Hence, probability arises
naturally from a deterministic theory! ‘‘Huh?’’ Hence, there is no problem with
finding dots instead of continuous waves, and the classical limit of point impacts of
particles is obtained! ‘‘Double huh?’

““You do not see the crystal-clear logic here? Let me continue the argument
then.”” Everyday experience gained by throwing small rocks at a wall containing
two open windows indicates that (1) a rock can go through only one window at a
time, and (2) there are no evident quantum interference effects observed on the
other side of the wall once the rocks pass through. Instead, the distribution of rock
impacts formed on a second wall positioned behind the first appears as a simple
geometric shadow pattern of the two windows. ‘‘Gee!’’ says the student. ‘‘That
seems reasonable. In this limit continuous waves and rock impacts are both
distributed in a geometric shadow pattern. Given enough rocks, you no longer
notice the dots. Go on.”” On the other hand, when a similar experiment is
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performed with a long de Broglie wavelength species (other than rocks) and
smaller more closely spaced windows, then whether or not experience (1) occurs
may well be impossible to determine, and experience (2) no longer obtains. Hence,
we must see dots! ‘“Oh, yeah, now I understand clearly. Like hell, I do!”’

An honest student may then ask if we really know how to solve Schrodinger’s
equation, or indeed solve any wave equation for this simple two-slit problem. *‘Of
course we do! Don’t we?’ Given the many discussions offered on the Young’s
interference experiment, it is highly curious that even the one-slit problem in
quantum theory has not been provided with a rigorous solution. However, this
problem seems to be an important one that is right at the heart of both the
measurement problem and the conceptual foundations of quantum theory. It is
noteworthy that Born and Wolf (1987) offer a chapter on ‘‘Rigorous diffraction
theory’’ that presents calculations of the approximate wave amplitude everywhere
for the half-slit diffraction problem (diffraction by an infinitely thin half-plane) for
classical electromagnetic waves. However, to my knowledge, even the half-slit
problem has not been solved with a similar degree of rigor for de Broglie waves,
especially in a manner that gets to the crux of the problem by including a detailed
interaction of the slit-imposed particle-absorbing boundary conditions for de
Broglie waves.

More commonly, a pair of slits are taken to be a very simple von Neumann
measurement device. The similarity to a von Neumann device is enhanced further
if the slits are made from film such that particles not passing through the slits are
detected thereon. Indeed, with absorbing slits (inelastic boundaries), the most
commonly applied (non-rigorous) solutions of this problem, used by both classical
and quantum mechanical treatments of the problem, are those of standard
Huygens-Fresnel-Kirchoff diffraction theory, in which the wave amplitude simply
collapses at the boundary. The use of this solution then sidesteps many of the
issues regarding the unresolved debate between Kirchoff, Rayleigh and
Sommerfeld as to whether or not self-consistent boundary conditions are being
applied, even in the domain of classical waves (see e.g. Goodman, 1968; Peterson
and Kasper, 1972). The fact that experimental observations of wave intensity made
in the very far field appear to agree with these solutions is then used to justify the
sledge-hammer approach used in their derivation.

“Does our inability to solve the wave equation relate to the problem with our
finding dots? Of course not!”” ‘‘Well then, is quantum theory maybe wrong? Is that
why we see dots?’’ ‘‘Unthinkable! Don’t you see the emperor’s fine clothes? Mr.
von Neumann points out that there are really two different processes at work here —
Schrodinger (unitary) evolution and wave-function reduction or collapse. That’s
why we see dots! Now do you understand?”” ‘‘Gee, how does this collapse-thing
work? Is there a more general equation than Mr. Schrodinger’s that explains both
processes in a unified way? Given this entanglement stuff, however, it is hard to
see how this can be a real physical process. Maybe if we can just understand the
dots, as Mr. Feynman proposes, then the entanglement stuff will go away.”” ‘“No
problem, just concentrate on the emperor’s fine clothes! It’s just a matter of you
young political radicals accepting a proper interpretation of our national
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Constitution (i.e. that by Max Bom)! If you believe firmly enough in this
interpretation (and wave the flag enough), you probably won’t even need this
wave-function collapse thing either.”’

POSSIBLE EXPLANATIONS FOR THE ‘‘DOTS’’

Bohm and Bub (1966) first suggested ‘‘corrections’’ to Schrodinger’s evolution that
provide a physical process for wave-function collapse. It is noteworthy that since
their early effort at least six conceptually similar theories have been proposed. Two
of these are discussed at this Symposium — one by Philip Pearle (see also Pearle and
Squires, 1994), and one by Roger Penrose (see also Penrose, 1994). Others include
one by Di6si (1987, 1989) as an extension of the Ghirardi—-Rhimini—Weber theory,
the Ghirardi-Rhimini-Weber (1986, 1987) theory itself, one by Hawking (1975),
and one by Ellis er al. (1984). All of these theories contain free parameters that
specify characteristic collapse times and distances, as well as additional terms
beyond those in Schrodinger’s equation. All then provide for spontaneous
localizations in the propagation of de Broglie waves that explain the dots, and all
provide an experimentally accessible breakdown of Schrodinger evolution.

Each theory attacks the problem of dot formation in the two-slit experiment from
a different perspective. As I am not an expert on these theories, I will leave a
calculation of their specific predictions to their authors. However, I do note that all
of these theories appear to offer a breakdown of quantum interference for the two-
slit experiment when very massive (and/or finite-sized) very short de Broglie
wavelength objects are used in this experiment. Correspondingly, they all provide
for a disappearance of quantum interference effects somewhere in the domain
between that for large rocks and that for elementary particles such as electrons.

TESTING THESE EXPLANATIONS WITH ROCKS IN A TWO-SLIT (OR N-SLIT)
EXPERIMENT

Curiously, although the above theories start from quite different premises, many
appear to provide a breakdown at about the same parameter values. This
coincidence is probably because the free parameters have been adjusted for the
breakdown to occur in an experimentally inaccessible ‘‘theorist’s safe haven’’
parameter range. A Young’s two-slit experiment performed with matter-waves for
very massive particles (rocks) then seems to be a natural arena for probing the
classical-quantum boundary for a possible breakdown, and for testing (or at least
constraining) the above theories. The breakdown hopefully appears before the
point where the rocks become sufficiently large that they will no longer fit through
the slits. If the rocks don’t fit through, then the two-slit experiment becomes
inapplicable as a testing ground, and one must attack, head-on, the unsolved
problems in diffraction theory mentioned above.

A Bodacious! experimentalist, when contemplating the associated orders of
magnitude for rocks, rather than viewing them as intimidating, finds them an
interesting challenge. Given significant advances in the state-of-the-art of
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experimental physics, one wonders if very large quantum objects, such as very
small rocks, can be made to demonstrate de Broglie-wave interference, whereupon
one may significantly narrow the parameter regime available for theorists’
speculation. This paper proposes such an experiment. While the parameters
available from the proposed experiment may not yet reach the critical values
needed to refute all of, or even some of, the above theories, they may at least make
the authors slightly nervous.

GTL INTERFEROMETRY

At our laboratory in the past few years, we have helped advance the state of the art
for the Young’s N-slit experiment to a point where we have performed it with large
“‘composite’’ particles such as whole potassium atoms (Clauser and Li, 1994a,
1994b). We do so with a method we have developed and call Generalized Talbot—
Lau (GTL) interferometry. The detailed theory behind this scheme is given by
Clauser and Reinsch (CR) (1992) (see also Clauser and Li, 1997). It is based on a
unique form of interference that is intimately associated with Fresnel diffraction.
This effect occurs in the near field region behind a diffraction grating where the
various Fraunhofer diffraction orders overlap and interfere. Fresnel diffraction is
essential for its explanation, since the effect depends on the distance between the
illuminating source for the diffraction and the diffraction grating, while the
Fraunhofer diffraction order positions do not. It was originally discover by Talbot
(1836) (see also Rayleigh, 1881) in the optical domain using lenses and gratings,
and is called the Talbot effect. The diffraction pattern formed by the interfering
orders consists of multiply ‘‘aliased”’ near self-images of the grating’s periodic
complex amplitude transmission function. One special limiting case among the
many possible image patterns formed is the geometric shadow pattern (see below).
The layout for a GTL interferometer is shown in Figure 1. It consists simply of a
set of three very wide diffraction gratings Gs, Gd, and Gm, in sequence, wherein
the notation indicates their specific respective function as source, diffraction, and
mask gratings. For our purposes here, each such grating is simply a thin sheet of
solid material with parallel slits cut through. The associated slit periods are then a,
ay, and a,, respectively, and the inter-grating spacings are R; and R,. These
gratings are illuminated by scalar waves of basically any kind (including de Broglie
waves), with the one restriction that they be quasi-monochromatic. The
illuminating source may be extended, uncollimated, and spatially incoherent.
Since there is no upper limit to the gratings’ widths, Wg; and Wg,, a GTL
interferometer has a very high throughput, yet is still capable of producing very
high contrast fringes. For interferometry with slow atoms, where available source
brightness is considerably less than that for fast atoms, it is particularly useful.
How does it work? In a GTL interferometer each point within each slit of Gs
acts as an independent point source. For each such source, diffraction grating Gd
produces strongly overlapped Fraunhofer diffraction orders on the face of Gm.
However, in this overlap region Fresnel diffraction applies, and the various orders
coherently superpose to create a form of wave interference — unique to Fresnel
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Figure 1. Layout for a GTL interferometer.

diffraction — called the Talbot effect. The interference produces a non-sinusoidal
standing de Broglie wave (interference fringe) on the face of Gm, thereby
allowing Gm to act as a mask, so that the fringe pattern’s presence may be
detected by laterally scanning a grating’s position and observing an associated
variation induced in the transmitted current. For sufficiently narrow Gm slits the
finite slit width only slightly washes out the fringes. Thus, while the gratings still
physically separate the various interfering paths within the beam’s envelope, that
envelope itself does not separate. Interfering paths within the envelope consist
topologically of many sets of nested diamonds, starting in a given slit on Gs,
passing through the various Gd slits and terminating at a point on Gm, where they
interfere.

Now if Gs is suitably periodic, each Gs slit produces essentially the same
standing wave as that produced by other Gs slits. The contribution by all Gs slits
then add to the intensity without deteriorating the fringe visibility. Again, for
sufficiently narrow Gs slits the finite slit widths further wash out the visibility only
slightly. This incoherent addition of Talbot fringe patterns is called the Lau effect
(1948). It is noteworthy that while the usual demonstrations of the optical Talbot
and Lau effects require the presence of one or more lenses, our generalization of
these effects allows a lens-free system.

The arrangement has very high grating-misalignment tolerance. Since no
collimation is needed, the formation of the standing wave is independent of the
source area and input k-vector direction; hence, neither coma nor spherical
aberration occurs. The price paid for the high angular acceptance is, however,
significant chromatic aberration. The standing wave formed at Gm is strongly
dependent on illumination wavelength and is not a simple geometric shadow effect,
but a true interference effect. Depending on illumination wavelength, the standing-
wave period appears at various different harmonics of the shadow period. Actually,
this chromatic aberration manifests itself as a resonant chromatic selectivity that
proves to be desirable in many instances, and can even act as a de Broglie-wave
interference filter (Clauser and Li, 1994b).
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Grating Gd is assumed to contain N slits. The basic scaling for interference in
this arrangement depends on three important parameters — the ‘‘reduced length”’, p,
defined as:

. RiR,
T Ri+R;
the geometric shadow magnification, M, defined as:

Ri+ Ry
R Ry p @

M

M=

and the quantity:

Arr=ay/p ®)
that we have named the Talbot-Rayleigh ‘‘wavelength”. The CR (1992) analysis
shows that the basic requirement for a ‘‘fringe’’ resonance to occur (whereupon
self-imaging occurs) is given by:

ATR a§ m

T = -A._p = ‘; +¢& (4)
where m and n are small integers and ¢ is small. This relation (with & = 0) was first
discovered by Winthrop and Worthington (1965) and by Gori (1979), and
generalized by CR to allow a small tuning error ¢. These integers are what we call
“‘resonance indices”. Effectively, they are quantum numbers for this geometry.
Equation (4) then represents a fundamental constraint for the generalized (finite-N)
Talbot effect to occur. Even minor changes to the geometry or wavelength will call
for a different set of m, n, and ¢, and significantly affect the image pattern formed.
Consider the images formed on the Gm plane by a point source located on the Gs
plane. Cowley and Moodie (CM) (1957) found that they are of two different kinds,
which they named ‘‘Fourier images” and ‘‘Fresnel images’. The analysis and
experiments by CM explained the Fourier images for infinite gratings, but left
Fresnel images as quite mysterious. The analysis by CR with finite gratings first fully
explained the origins of the formation of Fresnel images. Fourier fringes are formed
on the image plane for m = 1 and integer values of n > 1. The terms *‘fringe’’ and
“‘image’’ may be applied to the pattern formed on the Gm plane only loosely, as the
pattern’s shape is, in general, non-sinusoidal, but is not an image either in the usual
sense. Indeed, the pattern’s amplitude is a magnified (by M) near replica of the
complex grating amplitude transmission function itself. For a finite number of slits, N
< 0o, the pattern is a filtered (slightly rounded) amplitude self-image, with the
associated filtering given by CR’s (1992) equations (25)—(27). In the N = 00, £ = 0
limit, the self-image is an exact magnified replica. For N < 0o, the filtered self-image
has a finite envelope (produced via: CR, 1992: equation (25)) that is comparable to
the grating’s magnified finite shadow width. For finite N approximate self-imaging

persists for a finite range of ¢ # 0, limited by the inequality, lel < 2 / (n N).
Fresnel fringes are formed on the Gm plane for integer values, m > 1 and n > 1.
Clauser and Reinsch (1992) generalize the Gori (1979) and CM (1957) results to
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cover general complex gratings so as to show that the pattern now consists of
m copies (aliases) of the ‘‘filtered”” m = 1 (Fourier) amplitudes self-image per
geometric shadow period, with the associated complex amplitudes all added
together. The result is a periodic pattern with period Mas/m. Thus, we call the
resonance index m the ‘‘alias multiplicity’’. Because of this addition, the resulting
added set of images is no longer itself a self-image of the original grating, although
each of the added components is such a self-image. Correspondingly, for m > 1 the
summed pattern for a binary grating does not preserve the original grating’s slit-
width to period-width ratio. The m = 1 case is obviously consistent with the m > 1
case, as the Fourier image case represents the Fresnel image case wherein only one
copy, the filtered self-image itself, is present. Correspondingly, other features of
the m = 1 case discussed above, also persist in the m > 1 case.

Another curious feature of the generalized (finite N) Talbot effect is its close
connection with number theory. Whenever the product m x n is odd (whether or
not N is finite), then the whole pattern is shifted laterally (relative to the position of
the geometric shadow pattern) by half a shadow (magnified) period. When the
added components of a Fresnel image overlap, their added amplitudes interfere, so
that the integer fraction m/n is always reduced to lowest terms. Finally, the
Clauser-Reinsch formulae (25)-(27) apply exactly only when # is an integer factor
of N. This later fact then allows a Young’s N-slit interferometer to act as an analog
computer that can find the integer factors of N (Clauser and Dowling, 1996).

The analysis by CR also clarifies the formation of periodic geometric shadows.
The condition n = 0, & = 0, holds when the wavelength A exactly vanishes, i.e. the
A — 0 (n =0, e > 0) limit is the geometric shadow limit. Clauser and Reinsch
(1992) show that for binary gratings (opaque gratings with slits of width o) and
small but finite A, the mth Fourier coefficient of the shadow pattern (dominantly
contributed by the mth Fresnel image) vanishes abruptly at A / Arg = 04 / (m aa),
with the coefficient for the fundamental (m = 1) component correspondingly
persisting to longest wavelength, and itself then abruptly vanishing. This latter
sharp boundary may then be viewed (loosely, via the Constitutional interpretation
approach method only) as a sharp boundary between wave and particle behavior.
Actually, it demonstrates an abrupt onset of multi-slit interference.

GTL INTERFEROMETRY APPLIED TO SMALL ROCKS (OR LIVE VIRUSES)

While we have used GTL interferometry to do what amounts to the Young’s N-slit
de Broglie-wave experiment with large atoms (Clauser and Li, 1994a), the
wavelength scale used for atoms does not even approach the limits for GTL
interferometry. Suppose one desires to do this experiment with a very massive
particle species. As per de Broglie’s famous relation, such a species with mass m
and velocity v will have a de Broglie wavelength given by A = Agp = h/(mv).
Consider the arrangement for Figure 1 with a; = a,, = 2a,, where we specify a
convenient overall interferometer length of R; + R, = 3 m. Unambiguous wave
interference, that is clearly not a simple geometric shadow effect, can be
demonstrated using the n = 1, m = 2 resonance, through the fact that the image
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Figure 2. Required Gd grating period, ay, as a function of species atomic mass number for a
3 mlong n = 1, m = 2 GTL interferometer.

period is now one-half of that of the geometric-shadow period. Hence, if any
grating is translated laterally, the transmitted rock flux will be observed to vary at
twice the frequency to be expected for a simple geometric shadow being formed on
the Gm plane, and being masked by the Gm grating.

How can we do this with a very large mass (short A,3) species? A unique feature
of the above formulae is that for GTL interferometry the required Gd grating period
ay that is needed to create a given n, m resonance scales only as A45'/2. For thermal
rocks of mass m, whose velocity then scales as (kT/m)!/2, the grating period thus
scales only as m~1/4, Figure 2 plots this period as a function of species atomic mass
number for a 3 m long (o = 0.75 m) interferometer. The two lines on the left are
for the most probable particle velocity for thermal particles at 300°K and 3°K,
respectively, while the right side’s limiting line is for freely falling particles
gravitationally accelerating in the 3 m interferometer length. (GTL interferometry
in the presence of a gravitational field is discussed by Clauser and Li, 1996.)

What about the finite coherence length of the rocks? Presumably, there is no
coherence among the rocks, so that, as with atoms, the rocks’ translational velocity
spread determines their effective ‘‘coherence length’’. Correspondingly, the
associated determinant of fringe visibility (as with atoms) is actually the velocity
spread of the rocks within the beam, relative to the width of the associated
interferometer resonance. If the rocks are ‘‘cold’’ enough so that their velocity (and
A4p) distribution fits fully within the associated interferometer resonance (assumed
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n = 1, m = 2 for the calculation), then a high visibility m = 2 pattern will be
formed at twice the spatial frequency of the geometric shadow pattern. For initially
“cold”” slow rocks, whose velocity quickly becomes dominated by gravitational
free-fall, then the ‘‘gravitational pseudo-cooling’’, sometimes also called dynamic
velocity compression (see Clauser and Li, 1996: sect. XV) is so strong, and the
n =1, m = 2 resonance is so broad, that this condition is very easily satisfied. On
the other hand, if the rocks are ‘‘hot’’, a thermal velocity spread centered on the m
— 2 resonance will still show a strong second harmonic component, although other
harmonic content will be présent also. In either case, wave interference may be
unambiguously demonstrated.

Actually, ‘“‘coherence length’’ is not a particularly useful concept for gravity-
dominated motion. Indeed, we run into a similar ‘‘paradox’’ when considering the
same problem for our current rubidium experiment. Gravitational pseudo-cooling is
such an effective process that a naive calculation of coherence length for the falling
rubidium atoms in our current experiment shows that the coherence length of ultra-
cold atoms dropped from a MOT (magneto-optic trap) expands with time and
quickly becomes longer than its accumulated free-fall distance. Does it then
“‘bounce back’’ and have a finite amplitude for re-appearing at the source? The
paradox is resolved by integrating the Heisenberg equations of motion for a wave
packet in free fall. It doesn’t.

CONCLUSION

Using currently available electron-beam lithography and microfabrication tech-
niques allows fabrication of free-standing vacuum-slit gratings, with slit periods as
small as 0.05 um. Thus, one can see from Figure 2 that GTL de Broglie-wave
interferometry with very massive particles (containing, say, 108 nucleons), such as
very large atomic clusters (i.e. very small rocks) or even small live viruses, may be
achievable in the near future. I will leave the remaining question as to whether or
not these limits put the above theories in an awkward position as a question posed
to their authors.

Dept. of Physics
University of California, Berkeley

NOTE

! Bodacious is a very fast Farr-40 1-ton.
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